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A B S T R A C T   

Macrocyclic peptides possess unique features, making them highly promising as a drug modality. However, 
evaluating their bioactivity through wet lab experiments is generally resource-intensive and time-consuming. 
Despite advancements in artificial intelligence (AI) for bioactivity prediction, challenges remain due to limited 
data availability and the interpretability issues in deep learning models, often leading to less-than-ideal pre-
dictions. To address these challenges, we developed PepExplainer, an explainable graph neural network based on 
substructure mask explanation (SME). This model excels at deciphering amino acid substructures, translating 
macrocyclic peptides into detailed molecular graphs at the atomic level, and efficiently handling non-canonical 
amino acids and complex macrocyclic peptide structures. PepExplainer’s effectiveness is enhanced by utilizing 
the correlation between peptide enrichment data from selection-based focused library and bioactivity data, and 
employing transfer learning to improve bioactivity predictions of macrocyclic peptides against IL-17C/IL-17 RE 
interaction. Additionally, PepExplainer underwent further validation for bioactivity prediction using an addi-
tional set of thirteen newly synthesized macrocyclic peptides. Moreover, it enabled the optimization of the IC50 of 
a macrocyclic peptide, reducing it from 15 nM to 5.6 nM based on the contribution score provided by PepEx-
plainer. This achievement underscores PepExplainer’s skill in deciphering complex molecular patterns, high-
lighting its potential to accelerate the discovery and optimization of macrocyclic peptides.   

1. Introduction 

Macrocyclic peptides, a unique class of molecules positioned be-
tween small molecules and biologics, exhibit distinctive features that 
make them highly promising as a drug modality [1]. Noteworthy char-
acteristics include their synthetic feasibility, high affinity and speci-
ficity, tissue-penetrating capabilities, and low toxicity levels [2–4]. 
Leveraging these inherent attributes, macrocyclic peptides have 
exhibited notable potential in targeting both intracellular and extra-
cellular “undruggable” targets, such as protein-protein interactions 
[5–7] (PPIs), across various therapeutic fields [8–10]. 

Given the potential of macrocyclic peptides, the evolution of 

screening techniques [11,12] has played a critical role in facilitating the 
de novo discovery of macrocyclic peptides. The in vitro method 
employing mRNA display [13,14] offers a vast library of over 1012 se-
quences for screening, significantly increasing the possibility of identi-
fying peptides with desired properties [13,15]. Furthermore, the mRNA 
display can be integrated with the flexible in vitro translation (FIT) 
system [16,17], powered by advanced Flexizymes technology, to give 
the random non-standard peptide integrated discovery (RaPID) system. 
The system has emerged as a revolutionary platform, streamlining the 
screening process for macrocyclic peptides that include non-canonical 
amino acids (NCAAs) [18]. The incorporation of NCAAs broadens the 
chemical diversity of macrocyclic peptides and introduces novel 
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possibilities for identifying molecules with distinctive biological 
activities. 

While screening techniques have indeed facilitated the discovery of 
novel macrocyclic peptides, the integration of artificial intelligence has 
the potential to further enhance the discovery efficacy [19–21]. These 
investigations relied on deep learning algorithms, which are artificial 
neural networks with multiple processing layers capable of modeling 
complex nonlinear input-output relationships, performing pattern 
recognition, and feature extraction from low-level data representations 
[22]. These deep learning approaches have demonstrated the ability to 
not only rival but also surpass the effectiveness of traditional machine 
learning [23–25] and quantitative structure-activity relationship [26, 
27] (QSAR) approaches in drug discovery [28–30]. However, deep 
learning often lacks model interpretability in capturing complex 
nonlinear relationships [31,32], especially in medicinal chemistry [33, 
34], where interpretability is crucial not only for validating scientific 
hypotheses but also for providing valuable insights for molecular 
structure optimization. 

Currently, researchers are exploring the use of models trained with 
graph neural network (GNN) architectures [35] to enhance interpret-
ability [36]. GNNs have been applied in the field of drug discovery, for 
instance, in predicting molecular properties [37,38] and in generative 
models for de novo drug design [39]. However, traditional GNNs face 
challenges in analyzing macrocyclic peptides, as they typically offer 
interpretations at the atomic or bond level, rather than at a more 
macroscopic amino acid level. This limitation makes it difficult for GNNs 
to provide SAR that are useful for medicinal chemists in structural 
optimization and new drug design of macrocyclic peptides. The recent 
Substructure Masking Explanation (SME) method proposed by Wu et al. 
[40] has been effective in identifying and interpreting key molecular 
substructures in graph convolutional networks (GCNs), particularly in 
tasks like estimated solubility (ESOL), mutagenicity, and blood-brain 
barrier permeability (BBBP). SME incorporates various well-designed 
molecular segmentation methods such as BRICS [41] substructures, 
Murcko [42,43] frameworks, and functional groups, providing coherent 
interpretations with chemical principles. Despite these advances, to the 
best of our knowledge, there has not yet been a graph interpretation 
model specifically developed for macrocyclic peptides. 

In this study, we developed PepExplainer, a tool that utilize SME to 
identify key chemical fragments within macrocyclic peptides. Our 
research shows that there is a correlation between the enrichment of 
macrocyclic peptides from the focused library [20] and their bioactivity, 
with a Pearson correlation coefficient of 0.84. To improve the predictive 
precision of PepExplainer, we thus integrated a transfer learning strat-
egy [44,45]. PepExplainer initially pretrained on large scale data from 
selection to learn the relationship between peptide structure and prop-
erties. This approach significantly improves the model’s efficiency and 
accuracy in identifying potential macrocyclic peptides, which is re-
flected in the enhanced R2 and RMSE metrics. The efficacy of PepEx-
plainer is further showcased in a case study, where it significantly aids in 
optimizing macrocyclic peptides. 

2. Results and discussion 

2.1. Using PepExplainer with transfer learning strategy to predict the 
bioactivity of macrocyclic peptides 

Aiming to accurately predict the biological activity and interpret the 
SAR of macrocyclic peptides, we attempt to develop a robust model with 
superior performance. While most deep learning models developed for 
peptide-related task [46–48] are Transformer-based [49], which is 
well-regarded for its exceptional sequence fitting capability. Its appli-
cation to linear peptides appears more suitable than to macrocyclic 
peptides. When dealing with macrocyclic peptides that contain unique 
structures or NCAAs [50], amino acid sequence representation methods 
with numerical encodings face challenges [51]. These methods are 

difficult to capture the intricate macrocyclic structure adequately and 
often falter in representing NCAAs. In addressing this challenge, GNNs 
are able to consider macrocyclic peptides as comprehensive molecular 
graphs. Consequently, it enables the proficient encoding of the intricate 
molecular structure of macrocyclic peptides, paving the way for 
in-depth exploration and prediction of their properties. 

Next, we also seek to incorporate an interpretability mechanism in 
our model and dissect the contribution of amino acids to macrocyclic 
peptide bioactivity. Thus, we employed the SME technique, harnessing 
the capabilities of Relational Graph Convolutional Networks [52] 
(RGCNs). This specialized subclass of GNNs is tailored to adeptly 
manage heterogeneously structured data. As depicted in Fig. 1b, SME 
employs a masking mechanism to reveal the relationships between 
substructures within macrocyclic peptides and their impact on 
bioactivity. 

By integrating GNNs for prediction and SME for SAR discussion, our 
model, designated as PepExplainer, was constructed. To further enhance 
the reliability and precision of both prediction and explanation, our 
methodology incorporates a multi-model ensemble. This ensemble 
comprises ten PepExplainers, each initialized with random seeds, ulti-
mately forming a consensus model (Fig. 1c). The average of predictions 
from the ten PepExplainers determines the model’s output. 

To assess the contribution of each amino acid, we calculated its value 
using the formula derived from the difference between predictions of 
biological activity without amino acid masking and predictions with 
amino acid masking (Fig. 1d). This approach allows for a thorough ex-
amination of each substructure’s specific impact on the bioactivity of 
macrocyclic peptides, commonly known as SAR discussion. Moreover, 
by performing attribution analysis on amino acids at various positions 
(Fig. 1e), we can optimize specific positions based on their contribu-
tions, resulting in optimized macrocyclic peptides. 

During the development of PepExplainer, predicting bioactivity in 
drug development posed a challenge due to limited bioactivity data, 
often leading to overfitting of the model. To overcome this, we utilized a 
two-step transfer learning strategy as shown in Fig. 1a. In the first step, 
we trained a regression predictor for log enrichment using extensive 
data on macrocyclic peptide enrichment from the focused library against 
IL-17C (selection dataset). This data is related to affinity and provided a 
pre-training source for PepExplainer to learn the relationship between 
peptides’ structure and activity. This training helped PepExplainer to 
gain insights into macrocyclic peptides and their interactions with IL- 
17C. In the second step, we fine-tuned the pre-trained PepExplainer 
using bioactivity dataset. This refinement step aimed to enhance the 
model’s precision in predicting biological activity and reduce its 
dependence on extensive biological activity data. 

Overall, our approach combines PepExplainer and transfer learning 
to predict the bioactivity of macrocyclic peptides. PepExplainer func-
tions as an interpretable tool, offering insights for analyzing peptide 
substructures. This work addresses key challenges in macrocyclic pep-
tide research, including modeling, data scarcity, and model 
interpretability. 

2.2. Comparison of PepExplainer with baseline models 

After constructing the model’s architecture, we next seek to evaluate 
the performance of the model. The model’s overall performance was 
quantified using the R2 and RMSE calculated on the pIC50 values. The R2 

metric is essential for evaluating how well the model’s predictions 
correspond to the actual observed values, serving as a crucial benchmark 
for evaluating the model’s predictive power. Meanwhile, the RMSE of-
fers a quantitative measure of the prediction errors, providing insight 
into the precision of the model’s predictions. 

In this study, we examined four traditional machine learning algo-
rithms commonly used for SAR prediction: K-Nearest Neighbors [53] 
(KNN), Random Forest [54] (RF), Gradient Boosting Machine [55] 
(GBM), and Support Vector Machine [56] (SVM). To broaden the 
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Fig. 1. PepExplainer and substructure mask explanation for macrocyclic peptide bioactivity prediction and optimization. (a) Transfer learning strategy for improved 
prediction of macrocyclic peptide bioactivity. (b) PepExplainer’s architecture incorporates substructure masking, involving the input of a macrocyclic peptide 
structure, its conversion into a molecular graph, and subsequent processing through RGCN layers within PepExplainer to generate embeddings for prediction. 
Macrocyclic peptides are encoded as molecular graphs, with a highlighted amino acid denoted as E, featuring a blue node representing a nitrogen (N) atom and a red 
node representing an oxygen (O) atom. (c) An ensemble of multiple PepExplainers aggregates predictions, ensuring a more robust consensus on peptide bioactivity. 
(d) The consensus model focuses on attribution analysis, revealing how bioactivity changes when an amino acid (e.g., E) is masked. (e) The optimization of the target 
macrocyclic peptide according to amino acid contributions. 
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baseline models for comparative analysis, we combined these algo-
rithms with four molecular descriptors and two peptide descriptors. 
These descriptors include Extended Connectivity Fingerprints [57] 
(ECFP), Molecular ACCess System [58] (MACCS) keys, Weighted Ho-
listic Invariant Molecular [59] (WHIM) descriptors, and Physicochem-
ical Properties (PHYSICHEM), along with two peptide representations of 
amino acid encoding: One-Hot Encodings (SEQ) and Physicochemical 
Properties (PHYSICHEMb). Additionally, we integrated deep learning 
models based on the Transformer architecture, like BERT [60] (bi-di-
rectional encoder representations from transformers), which have 
shown excellent performance in peptide-related tasks. By combining 
different peptide encoding techniques with machine learning algorithms 
and introducing sequence-based deep learning models, we developed a 
diverse set of predictive models. 

For comprehensive details regarding the construction of the baseline 
models, readers are directed to refer to the Methods section and 
Table S1. Compared to baseline models, PepExplainer exhibits 
outstanding performance, especially when enhanced with transfer 
learning on enrichment datasets, substantially improving its predictive 
abilities. Fig. 2a and b illustrate this enhancement. It significantly out-
performs PepBERT in key metrics, R2 and RMSE when incorporating 
transfer learning. Specifically, it achieved an R2 of 0.96 and an RMSE of 
0.29 on the training set, an R2 of 0.94 and an RMSE of 0.38 on the test 
set, as shown in Fig. 2c and d. In bioactivity prediction, a high R2 and 
low RMSE indicate that the model accurately and reliably predicts with 
minimal error. And the consistent metrics scores across training and test 
sets indicate PepExplainer’s effective avoidance of overfitting. 

The improvement from transfer learning is evidenced by the 

Fig. 2. Comparison of prediction results between PepExplainer and baseline models. It includes a comparison of PepExplainer with baseline models on the test 
dataset with (a) R2 and (b) RMSE as performance metrics. The predicted values provided by PepExplainer in the bioactivity dataset: (c) for the training dataset and 
(d) for the testing dataset. It also explores the correlation between enrichment and bioactivity in the focused library of the selection against IL-17C. A logarithmic 
transformation is applied to both datasets to manage the data effectively, allowing for a clearer understanding of the relationship between variables and reducing the 
impact of outliers. (e) Shows a scatter plot for 45 peptides, revealing a strong correlation with a Pearson coefficient of 0.84 and a p-value of 9.85 × 10− 13. (f) Displays 
a scatter plot for the same peptides but using predicted labels from PepExplainer, showing an enhanced correlation with a Pearson coefficient of 0.92 and a p-value of 
3.02 × 10− 19, further solidifying the relationship between enrichment and bioactivity. 
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correlation between the enrichment and bioactivity of macrocyclic 
peptides in the focused library, achieving a Pearson R of 0.84 (see 
Fig. 2e). Using PepExplainer for predictions further enhanced this cor-
relation, with the Pearson R at 0.92 for predicted values (refer to Fig. 2f). 
This increase demonstrates that PepExplainer had learned the correla-
tion and thus enhanced predictive accuracy after transfer learning. 
Moreover, the flexibility of transfer learning is proven by its practical 
application in a different architecture like BERT. 

The effectiveness of deep learning models in understanding their 
inputted data depends on the appropriate representation. PepExplainer 
distinguishes itself in this aspect, as it uses a molecular graph to repre-
sent these peptides, capturing their atomic topological structure with 
greater precision. As shown in Fig. 3a, we employed the t-SNE [61] 
(t-distributed Stochastic Neighbor Embedding) algorithm to visualize 
high-dimensional data. Each point on the plot represents a macrocyclic 
peptide, with proximity suggesting similarity and color indicating 
enrichment levels. By incorporating enrichment level labels, PepEx-
plainer effectively groups structurally similar peptides and distinctly 
separates clusters using color-coded enrichment levels. In contrast, the 
sequence-based approach of BERT, focusing on amino acid positions and 
types, falls short in depicting the detailed structure of macrocyclic 
peptides (Fig. 3b). This limitation means that it only learns the 
sequence-to-label information, not the specific structures, leading to less 
effective clustering of points compared to PepExplainer. As a result, 
BERT is difficult to clearly show the relationship between the structure 
of peptides and their enrichment levels in the t-SNE mapping. Further-
more, in an unsupervised learning scenario (Fig. S2a), BERT’s repre-
sentation appears scattered and disordered in the t-SNE plot. 

Another representation method in bioinformatics is molecular fin-
gerprints (Fig. S1), which turn molecular structures into mathematical 
vectors for a discrete description, including details about atoms, bonds, 
and charge distributions. We used ECFP to study macrocyclic peptides’ 
chemical/biological features (Fig. S2b). ECFP and PepExplainer exhibit 
similar clustering patterns, with numerous clusters forming. This simi-
larity underscores PepExplainer’s proficiency in accurately capturing 
atomic-level physicochemical structural details, demonstrating a per-
formance level equivalent to that of ECFP. 

Overall, PepExplainer outperforms traditional machine learning 
models in accurately predicting macrocyclic peptide activity and excels 
in molecular structure visualization through t-SNE mapping. It effec-
tively groups and distinguishes peptides, offering high predictive accu-
racy and enhanced structural insights through visualization. 

2.3. The interpretability of PepExplainer for macrocyclic peptides 

SAR enables a more profound comprehension of the relationships 

among molecular structure and properties. Interpreting peptide struc-
tures is straightforward for peptide chemists. However, interpreting 
deep learning models is challenging due to their “black box” nature. 
Even when predictions align with experimental data, the underlying 
mechanisms are complex. To address this, we designed PepExplainer to 
discriminate the contribution levels of positions and amino acid types in 
macrocyclic peptides to biological activity. By inputting the SMILES or 
graph representation, the model predicts the activity and assesses the 
impact of each amino acid, providing intuitive explanations for activity 
changes. Leveraging PepExplainer, we can ascertain the contribution of 
each amino acid. In this study, we utilized distinct colors to highlight the 
impacts of peptide substructures on their activities toward the IL-17C 
target protein. 

Fig. 4 illustrates the visual outcomes for the top three peptides with 
the highest activity and those with lowest activity. Each amino acid 
within the macrocyclic peptides was colored to denote its impact on 
biological activity: gray signifies a minor impact (either positive or 
negative), light colors (light green for positive impact, yellow for 
negative impact) indicate a moderate impact, and dark colors (dark 
green for positive impact, orange for negative impact) signify a signifi-
cant impact. The amino acid sequence of each macrocyclic peptide is 
presented below its structure, with amino acid characters colored to 
correspond with the structure. In Fig. S3, detailed contribution values 
are provided, displayed on a color spectrum ranging from − 1 to 1, of-
fering a continuous numerical representation of the varying impact 
levels of individual amino acids on enrichment values. The visualization 
for the whole bioactivity dataset is provided in Fig. S4. The visual rep-
resentation of color patterns enables an intuitive understanding of how 
individual amino acids contribute to the activity of a macrocyclic pep-
tide. A predominant presence of positively contributing amino acids is 
observed in peptides with high activity, whereas peptides with low ac-
tivity typically exhibit negative values or minimal contributions. For 
example, in peptides demonstrating high activity, a noteworthy positive 
contribution is observed in the first half of the sequence, as highlighted 
in dark green for peptides Lib2-1, Lib2-2, and Lib2-3. Conversely, in 
peptides with low activity, the negative contribution becomes evident 
specifically at positions 2, 3, and 5, as highlighted in orange for peptides 
L20–15 and L20-16. Generally, macrocyclic peptides with low activity 
values display a color pattern where most amino acids appear in shades 
of gray. Moreover, when an amino acid at a particular position transi-
tions from one type to another, substituting it with a structurally similar 
amino acid leads to minimal overall impact on activity, and the visual 
color patterns in the structure remain largely consistent. For instance, in 
peptides Lib2-1 and Lib2-2, the amino acids at position 10 differ, with 
Lib2-1 featuring N and Lib2-2 featuring D. These two amino acids differ 
by only one atom in their structures, possessing similar physicochemical 

Fig. 3. Visualization of macrocyclic peptide molecular representations in selection dataset using t-SNE mapping. This figure delineates peptide structural repre-
sentations through (a) PepExplainer embeddings and (b) PepBERT embeddings. Each point on the plot represents a macrocyclic peptide, with proximity suggesting 
similarity and color indicating enrichment levels. 
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properties. Consequently, they can exhibit the same IC50 value, 1.4 nM. 
Thus, PepExplainer offers a visual analysis method for assessing the 

activity of individual peptides. It reveals the potential for fine-tuning 
molecular activity through the modification of particular amino acids 
or chemical structures. 

2.4. Application in bioactivity prediction and optimization 

Upon showing superior performance compared to other machine 
learning models and demonstrating the capability for interpreting the 
SAR of macrocyclic peptides, PepExplainer was subsequently subjected 
to additional validation to affirm its capability in predicting bioactivity. 
We chose an additional set of 13 macrocyclic peptides, initially pre-
dicting their bioactivities (Fig. 5). Subsequently, we proceeded to 
chemically synthesize these peptides, followed by their evaluation using 
enzyme-linked immunosorbent assay (ELISA). According to the pre-
dicted and experimentally assessed activities, we confirmed that the 
model is reliable, notwithstanding some observed fluctuations. Most 
macrocyclic peptides demonstrated notable consistency between the 
predicted IC50 values and the experimentally measured values. Take 
macrocyclic peptide cP1, for instance, where the predicted IC50 value of 
21.3 nM aligns commendably with the experimentally measured value 
of 15 nM. Nevertheless, in the case of macrocyclic peptide cP3, the 
predicted IC50 value is 9.2 nM, whereas the actual value is 68 nM. 
Despite this notable difference, both values still fall within the loga-
rithmic scale range. This is attributed to our choice of using pIC50 as the 
training target for activity, which imposes an upper accuracy limit of a 
10-time difference on the logarithmic scale. Another reason is the rela-
tive scarcity of leucine (L) at the third position of cP3 from the N- 

terminus in the selection dataset. This suggests that the model lacks 
similar structural data for learning, consequently impacting the pre-
dictive accuracy for this cyclic peptide. PepExplainer performed 0.7 in 
R2 and 0.54 in RMSE on the independent test set. Although these metrics 
are slightly lower than those observed in the previous training and test 
sets, the model still shows dependable predictive accuracy, especially 
when considering the logarithmic scale. Additionally, we evaluated the 
impact of reducing the training set size using 13 newly tested peptide 
data points as an independent test set, calculating R2 and RMSE metrics 
(Fig. 5a). We systematically reduced the training set size (total is 59) by 
10 %, 20 %, 40 %, 60 %, and 80 %, assessing its effect on model per-
formance (Fig. S5). Our findings indicate that a minimum of 30 bioac-
tivity data points in the training set is recommended for more reliable 
predictions. Despite the importance of bioactivity data, our model shows 
potential for accurate prediction and optimization even with a smaller 
dataset. Moreover, under the assistance of PepExplainer, we identified 
ten macrocyclic peptides with enhanced activity compared to 17C-L20, 
which showed moderate inhibitory activity in the initial library. In 
particular, cP1 has an IC50 of 15 nM. 

To further check the predictive accuracy, we introduced mutations to 
the four most variable positions (3, 6, 7, 11 from the N-terminus) of the 
17C-L20 peptide (IC50 = 166 nM), substituting each with 19 different 
amino acids. This resulted in the generation of 76 mutated macrocyclic 
peptides (4 × 19). We employed PepExplainer to predict the activities of 
these mutated macrocyclic peptides. The heatmap in Fig. 5b illustrates 
the variance between the predicted pIC50 values of the mutated 
macrocyclic peptides and the actual activity of 17C-L20. In the heatmap, 
green denotes increased activity for the mutated macrocyclic peptides. 
At the same time blue signifies a decrease, with the color intensity 

Fig. 4. Comparative analysis of macrocyclic peptides highlighting amino acid contributions to enrichment values. Six peptides are compared: the top three active (a- 
c) and the least active (d-f). The amino acids within each peptide are color-coded to reflect their affinity impact: gray indicates minimal impact, light colors (green for 
positive, yellow for negative) denote moderate influence and dark colors (green for positive, orange for negative) hues for a significant contribution. Beneath 
peptide’s structural depiction is its amino acid sequence, color-matched for easy comparison. The color coding is adjusted based on the contribution values derived 
from PepExplainer. 
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reflecting the magnitude of the activity change. Out of these 76 variants, 
actual activity data were available for 24 macrocyclic peptides. When 
comparing the model’s predicted ranking with the actual activity 
ranking, we identified only three macrocyclic peptides with predicted 
IC50 values that deviated from the actual results (Fig. 5c). In summary, 
PepExplainer exhibited a high accuracy of approximately 87.5 % (21 out 
of 24) in predicting the activity changes of mutated macrocyclic pep-
tides, underscoring its effective prediction and ranking capability. 

To further expand the application scope of PepExplainer, we 
implemented an average contribution optimization strategy to improve 
the biological activity of a specific peptide, cP1 (Fig. 6a). This strategy 
can enhance the biological activity of a macrocyclic peptide by intro-
ducing specific mutations at individual amino acid positions. The opti-
mization process selected a single amino acid for modification based on 

the average impact of various amino acids on the biological activity of 
the macrocyclic peptide. cP1, with a mutation at position 3, demon-
strated a significant enhancement in inhibitory activity compared to 
17C-L20. Meanwhile, mutations at positions 6 and 7 appeared to 
negatively impact activity, as shown in Fig. 5b. Therefore, we opted to 
focus on mutations at position 11 to further enhance the activity of cP1. 
In this study, we randomly selected 2000 macrocyclic peptides from 
selection dataset from the focused library [20] and employed PepEx-
plainer to assess the precise influence of amino acids at position 11 on 
affinity. In Fig. 6b, the attribution scores are visualized through a scatter 
plot, where orange denotes positive contributions and blue signifies 
negative ones. Adjacent to each amino acid, the average contribution is 
displayed in green (indicating a positive effect) or red (indicating a 
negative effect), providing insight into the overall impact on the 

Fig. 5. Peptide position and amino acid type analysis using PepExplainer. (a) Newly tested peptides’ bioactivity along with their IC50 values predicted by PepEx-
plainer. (b) Single amino acid mutations of peptide 17C-L20 (YHHYYRILYGELGCG, IC50 = 166 nM) at four variable positions (position 3, 6, 7, 11). Mutations 
resulting in improved predicted IC50 values are highlighted in green. Conversely, mutations that negatively impact these values are distinctly marked in blue. In 
instances where a very high predicted standard deviation occurs, a label of 0 is assigned. (c) Detailed prediction outcomes for mutational analysis of the base 
macrocyclic peptide 17C-L20 at the four most variable positions. 
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peptide’s affinity at that specific position. For a comprehensive analysis 
of average contributions at other crucial positions, please refer to 
Figs. S6 and S7. Amino acid E (glutamate) at position 11 contributes 
with a value of 0.248, whereas N (asparagine) and R (arginine) exhibit 
higher positive contributions of 0.404 and 0.428, respectively. Consid-
ering that introducing R could reduce protease resistance, despite its 
highest contribution score (Fig. 6b), we opted to mutate E to N instead 
and proceeded to validate the activity of the macrocyclic peptide cP14 
after peptide synthesis. Notably, substituting E at position 11 with N 
resulted in a remarkable enhancement in the biological activity of the 
macrocyclic peptide, showing the IC50 value at 5.6 nM, as illustrated in 
Fig. 6a. It should be noted that the attribution value for C (cysteine) is 
0.827 (Fig. 6b), indicating that cysteine might significantly impact the 
bioactivity of the peptide. However, we chose not to conduct further 
testing cysteine based on the following considerations: 1) During the 
synthesis of cyclic peptides, if cysteine is present at position 11, it may 
compete with the cysteine at position 14 to react with the N-terminal 
chloroacetyl group, forming a thioether cyclic peptide. 2) Despite the 
high attribution value for cysteine, its frequency is relatively low in our 
randomly sampled set of 2000 compounds. This suggests that although 
cysteine theoretically has a significant impact on activity, its represen-
tation in the overall dataset is insufficient to justify in-depth individual 
testing. 

To assess the broad applicability of PepExplainer, we tested it with 
three distinct datasets. These datasets include the nonfouling dataset 
introduced by Ansari [62], the HLA class I binding dataset proposed by 
Chu et al. [46], and the thioether-cyclized peptides dataset from Merz 
et al. [63]: 1) The nonfouling dataset: Comprising 17,185 sequences 
with peptide lengths ranging from 5 to 20 residues, this dataset allowed 
us to establish baseline models for binary classification. PepExplainer 

showed strong performance, outperforming the LSTM [62] baseline but 
lagging behind PeptideBERT [64]. 2) The HLA class I binding dataset: 
This well-curated dataset includes peptide-HLA class I binding data for 
deep learning model training and optimization. It provided a robust 
platform for explanation analysis. PepExplainer achieved an accuracy of 
0.935 an independent dataset of peptides binding to the HLA-A68:01 
allele, comparable to TransPHLA [46], and successfully provided an 
optimization example based on attribution scores. 3) The 
thioether-cyclized peptides dataset: This dataset involves a combinato-
rial synthesis and screening approach based on sequential cyclization 
and one-pot peptide acylation and screening. It is closely aligned with 
the enrichment data techniques in this work. The dataset comprises 
8448 cyclic peptides screened against the disease target thrombin, 
showcasing PepExplainer’s performance (R2 = 0.469) on macrocyclic 
peptides. Our results demonstrated that PepExplainer could effectively 
identify significant contributors within the dataset, confirming its 
effectiveness in screening complex peptide libraries, including NCAA 
and cyclic peptides. For further details, please refer to the Supporting 
Information in section “Extend PepExplainer to other datasets”. 

Thus, PepExplainer has proven to be a valuable tool for predicting 
and optimizing the biological activity of macrocyclic peptides. This 
contribution marks a substantial advancement in library-based 
screening, showing great potential in refining peptide drug develop-
ment processes. 

3. Conclusion 

Macrocyclic peptides, bridging the gap between small molecules and 
proteins, hold significant promise in therapeutic applications. Their 
complex structures, however, pose a challenge for AI models in assessing 

Fig. 6. The optimization of macrocyclic peptide according to the average attribution at position 11. (a) cP1 (YHQYYRILYGELGCG, IC50 = 15 nM) was optimized by 
substituting the amino acid from Glu (E) to Asn (N), resulting in cP14 (YHQYYRILYGNLGCG, IC50 = 5.6 nM). (b) The average attribution for substructures within 
sampled macrocyclic peptides in selection dataset. 
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their biological activity. To tackle this, we developed PepExplainer, a 
model that utilizes advanced deep learning techniques, integrating 
GNNs and SME. This model excels in predicting and interpreting the 
activity of macrocyclic peptides, drawing on datasets from selection- 
based screening. A key finding is that incorporating enrichment data 
enhances prediction accuracy, as evidenced by improved R2 and RMSE 
metrics. The improvement is attributed to the discovered correlation 
(Pearson R is 0.84) between bioactivity and enrichment values, 
addressing the issue of insufficient activity data hampering prediction 
capabilities. PepExplainer outperforms traditional machine learning 
methods, offering a novel approach to handle NCAAs and as an inter-
pretable data analysis tool. Its practicality and efficacy in predicting the 
biological activity of macrocyclic peptides have been validated experi-
mentally. We can decide which amino acids to modify to optimize a 
peptide through attribution analysis. The advent of PepExplainer could 
accelerate the discovery and optimization of peptides, representing an 
advancement over existing methodologies. 

4. Methods 

4.1. Datasets 

Our research utilizes two principal datasets: the selection dataset and 
a bioactivity dataset (Fig. 1). The selection dataset, sourced from a 
focused library constructed via the RaPID system (Fig. S8) and the 
PepScaf [20] framework, underwent rigorous filtering to ensure data 
quality. Valid macrocyclic peptide sequences were defined as starting 
with “M” and ending with “CGSGSGSamber”. Sequences deviating from 
this format were excluded, resulting in 163,949 valid macrocyclic pep-
tide data points, each with 15 residues including ClAc-LY and C as 
linkage nodes. 

For the focused library construction, we fixed amino acids at six key 
positions (2, 3, 6, 7, 11, and 13) across most macrocyclic peptides. The 
specific amino acid distribution at these positions is detailed in Fig. S9. 
In the selection dataset, the minimum enrichment value, equivalent to 
DNA sequencing reads, was set at 1, indicating negligible binding abil-
ity. Peptides with enrichment values below 10 constituted 86.1 % of the 
dataset. 

PepExplainer’s representational capabilities effectively capture the 
SAR of macrocyclic peptides. We demonstrate these capabilities through 
an interactive macrocyclic peptide atlas, offering visual clustering and 
similarity searching based on Schwaller’s methodology [64] (Fig. S10). 

The bioactivity dataset contains 66 peptide samples (59 for training 
and 7 for test), each with IC50 values, divided into training and test sets 
for comprehensive model evaluation. Notably, these sets include pub-
licly available peptide data from previous studies, complemented by an 
additional independent test set involving new activity tests. These tests 
were conducted in this study to assess the model’s activity prediction 
capability under varying distributions. 

4.2. Amino acids substructure mask explanation 

For effective peptide analysis, particularly concerning amino acid 
substitutions, we implemented the SME model with consensus methods. 
By training the model using various random seeds, we generate multiple 
independent predictions. The average and standard deviation of these 
predictions are then calculated, using the standard deviation as a mea-
sure of prediction reliability. This approach helps us evaluate the con-
sistency and credibility of the predictions. Significant variation in the 
model’s predictions for the same compound suggests substantial random 
error, reducing reliability. While our model does not directly account for 
specific experimental errors in each measurement, assessing the pre-
dictions’ consistency and stability allows us to indirectly identify and 
reflect the potential impact of experimental errors on the results. 

These models use RGCNs for enhanced molecular property predic-
tion, focusing on meaningful amino acid substructures often missed by 

traditional GNN explanation methods. RGCNs, with edge feature inte-
gration, outperform standard physicochemical descriptors and deep 
learning models in interpretability. Our approach uniquely encodes 
macrocyclic peptides into molecular graphs, with specific amino acids 
and their constituent atoms represented as distinct colored nodes. 
Through RGCN layers, each node updates its state by integrating in-
formation from its neighbors, analogous to creating molecular finger-
prints. The propagation rule for each node v is calculated via: 

hl+1
v = σ

⎛

⎝
∑

r∈R

∑

u∈Nr
v

W(l)
r h(l)

u + W(l)
0 h(l)

v

⎞

⎠

where h(l+1)
v represents the state vector of a target node v after l + 1 it-

erations, The term Nr
v refers to the neighbors of node v inked by an edge 

of type r, where R is the set of all edge types. The neighbors are nodes 
directly connected to v. We use σ( ⋅) as an element-wise activation 
function, specifically adopting ReLU in our approach. The weight W(l)

r 
corresponds to the neighbor node u connected to v by an edge with 
relation r ∈ R, while W0

(l) is the weight for the target node v itself. This 
framework allows for the explicit incorporation of edge information into 
the RGCN for each relation r ∈ R. The weight W(l)

r is derived from a 
linear combination of basis transformations. 

By leveraging attention pooling to aggregate node information, we 
can derive molecular embeddings and predict molecular properties via 
three fully connected (FC) layers. The attention pooling mechanism is 
defined as follows: 

wv = sigmoid(W⋅hv + bias)

molecular embedding =
∑N

v=1
(wv⋅hv)

where W and bias are trainable matrices in the model, utilized for linear 
transformations during training. N represents the total number of nodes 
in a molecular graph. The sigmoid function is employed as an activation 
function, ensuring that the attention weight wv of each node v remains 
bounded between 0 and 1. This weight wv reflects the significance of 
node v’s feature hv in the molecular graph, enabling a focused and 
precise molecular property prediction. 

The essence of perturbation-based methods lies in using masks to 
obscure certain atoms, bonds, or fragments in a GNN model. This helps 
identify substructures whose absence significantly impacts model pre-
dictions. However, using non-chemically informed mask units often 
results in confusing patterns that are hard for chemists to interpret. To 
address this, our study employs common computational chemistry 
techniques for splitting compounds, utilizing well-defined substructures 
as mask units (Fig. S11 illustrates the concept of masking with Chem-
Draw for cP14). This approach focuses on identifying key substructures, 
like the masked amino acid Glu shown in Fig. 1b, whose absence 
significantly impacts a GNN’s predictive outcomes. Considering that a 
GNN determines molecular properties by passing a molecular embed-
ding through a trained fully connected (FC) layer, generating a precise 
embedding for a molecule with masked elements is vital. The method-
ology for this process is defined as follows: 

molecular embeddingmask =
∑N

v=1
(wv⋅hv⋅maskv)

maskv =

{
0, if node v is mask

1, otherwise  

In this formula, mask v is defined as 0 if node v is masked and 1 other-
wise. Here, N represents the total number of nodes, wv is the attention 
weight for each node v, and hv signifies the general feature of node v. 

In Fig. 1d, we define attribution as the degree to which a masked 
substructure affects the overall GNN prediction. To determine this, we 
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compare GNN predictions before and after applying masks to the mo-
lecular graph. The attribution is the difference in these predictions, 
where sub represents the masked substructure, m the number of RGCN 
models (10 in this study), and i the specific RGCN model. 

Y =
∑m

i
Yi

Ysub =
∑m

i
Yi,sub

Attributionsub = Y − Ysub 

For clearer interpretation, we normalize these attribution scores 
(Attribution N) to a 0–1 scale. Masking a node impact not just the atom 
itself but also its chemical surroundings, including adjacent atoms/ 
bonds. This effect diminishes with distance from the central atom. Thus, 
while masking a node primarily obscures information about that atom, it 
partially affects nearby atoms/bonds too. However, for simplicity, we 
illustrate it as masking only the node itself in this article. 

4.3. Traditional machine learning strategy 

In this study, we explored four traditional machine learning models 
commonly used for SAR prediction, as illustrated in Fig. S1. The models 
were constructed using the MoleculeACE [65] platform and encompass 
the following algorithms:  

1. K-Nearest Neighbors (KNN): This method employs a nonparametric 
strategy, predicting the response of a new molecule based on the 
average responses of the k most similar molecules in the training set.  

2. Random Forest (RF): RF is an ensemble method that consists of 
multiple distinct decision trees, each trained on varied subsets of the 
training data generated through bootstrapping. The final prediction 
for a molecule is made by averaging the outputs of each tree. 

3. Gradient Boosting Machine (GBM): Like RF, GBM also utilizes mul-
tiple decision trees. However, it refines each subsequent tree to 
reduce the residuals left by its predecessor, enhancing prediction 
accuracy.  

4. Support Vector Machine (SVM): SVM works by projecting data into 
higher dimensions using a kernel function (such as a radial basis 
function in our study) to identify an optimal separating hyperplane 
that best segregates the training data. 

To broaden the baseline models for comparison analysis, we com-
bined these algorithms with four types of molecular descriptors and two 
types of peptide descriptors. These descriptors, crafted to encapsulate 
specific chemical characteristics, vary in complexity:  

1. Extended Connectivity Fingerprints (ECFP): Represent atom- 
centered radial substructures in a binary format.  

2. Molecular ACCess System (MACCS) keys: Indicate the presence of 
predefined substructures in binary form.  

3. Weighted Holistic Invariant Molecular (WHIM) descriptors: 
Emphasize three-dimensional aspects like molecular size, shape, 
symmetry, and atom distribution. 

4. Physicochemical Properties (PHYSICHEM): Physicochemical prop-
erties relevant for drug-likeness [66], these serve as a baseline. 

And the amino acid encoding [67] for peptide representations 
include:  

1. One-Hot Encodings (SEQ): Encoding for the 20 amino acids. 
2. Physicochemical Properties (PHYSICHEMb): A combination of com-

mon QSAR descriptors for peptide sequences, such as BLOSUM [68] 
(BLOcks SUbstitution Matrix), VHSE [69] (principal components 
score Vectors of Hydrophobic, Steric, and Electronic properties), etc. 

4.4. PepBERT 

In this study, we employed PepBERT as the baseline model, which is 
a modification of the original BERT framework. To tailor it specifically 
for peptide bioactivity regression tasks, we reduced the complexity of 
the original BERT model. This reduction was achieved primarily by 
decreasing the number of layers and minimizing the size of the vocab-
ulary. Further information on the various hyperparameters involved can 
be accessed through our published code. 

In our encoding process, unknown amino acids were substituted with 
the “[UNK]” token, differing from the standard amino acid alphabet. We 
employed an embedding matrix to represent amino acids as continuous 
vectors, a typical method in deep learning. Additionally, our scheme 
included special tokens from the original BERT model, like “[PAD]”, 
“[CLS]”, “[SEP]”, and “[MASK]”. For macrocyclic peptides, despite their 
cyclic structure, we encoded them as linear 14-length sequences with 
special tokens, simplifying their complex nature for computational 
efficiency. 

4.5. Chemical synthesis of the macrocyclic peptides 

The synthesis of macrocyclic peptides followed a standard Fmoc 
solid-phase procedure, utilizing 0.5 g of Rink Amide MBHA resin. The 
resin underwent swelling in a dichloromethane (DCM) solution with 0.3 
mmol hydroxybenzotriazole (HOBT), 0.3 mmol Fmoc-Gly-OH, and 5 % 
N,N′-Diisopropylcarbodiimide (DIC) at room temperature (RT) for 1 h 
under nitrogen gas. Subsequent steps included filtration, washing, Fmoc 
deprotection with 20 % piperidine in dimethylformamide (DMF), and 
amino acid coupling reactions using 0.9 mmol HOBT, 0.9 mmol Fmoc- 
AA-OH, and 10 % DIC in 10 mL DMF. The full peptide synthesis 
involved cycles of deprotection and coupling, and a bromoacetyl group 
was attached to the N-terminal amide for macrocyclic formation. The 
peptides were cleaved, precipitated with diethyl ether (Et2O), redis-
solved in 10 mL dimethylsulfoxide (DMSO), adjusted to pH 8.0, and 
incubated for 1 h to enable cyclization. The cyclization reaction was 
quenched by adjusting the pH to 3 ∼ 4 with trifluoroacetic acid (TFA). 
Purification was performed by reverse-phase HPLC with a linear 
gradient from aqueous solution with 1 % TFA to acetonitrile (MeCN) 
with 1 % TFA. Peptide purity over 95 % was confirmed by LC-2020 
(Shimazu), and mass spectra were verified by LCMS-2020 (Shimazu) 
before lyophilization. 

4.6. Evaluation of macrocyclic peptides 

To assess the activities of the selected macrocyclic peptides, 
competitive ELISA were conducted. In this study, 80 μ L of 1 μ g/mL 
interleukin-17 receptor E (IL-17RE) was added to each well and incu-
bated at 4 ◦C overnight for immobilization. Following four washes with 
150 μ L 1 × PBST buffer, the wells were blocked with 100 μ L of 1 × PBST 
buffer containing 2 % BSA at RT for 1 h. Subsequently, the wells were 
washed again with 150 μ L 1 × PBST buffer before being mixed with 100 
μ L of biotinylated IL-17C (0.5 nM) and various concentrations of each 
macrocyclic peptide, followed by incubation at RT for 1 h. After four 
washes, 150 μ L of Streptavidin-HRP solution (1:1000 dilution) in 1 ×
PBS was added to each well and incubated at room temperature for 1 h. 
Following another washing step, 100 μ L of 3,3′,5,5′-tetramethylbenzi-
dine (TMB) solution was added to each well and incubated at RT for 10 
min to develop color. After incubation, ELISA stop solution (Absin) was 
added to the wells, and absorbance was measured at 450 nm using the 
Tecan Spark multimode reader. The IC50 values were calculated using 
the nonlinear regression method: (inhibitor) vs response–variable slope 
in GraphPad Prism. 

4.7. Data and software availability 

Source code for PepExplainer and data analysis, and instructions to 
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reproduce the work can be found at https://github.com/zhaisilong/Pep 
Explainer. The construction of the model is executed using Python 3.7, 
supplemented by dgl-cuda11.3 (version 0.7.1) and PyTorch (version 
1.12.1). Data processing and metric calculations are also carried out 
using Python 3.7, utilizing scikit-learn (version 1.0.2), NumPy (version 
1.19.5), and Pandas (version 2.1.1). 

Our strategy employs 5-fold cross-validation to split the dataset into 
training and testing sets. We adhere to the optimal hyperparameters 
suggested in the original model’s paper, making only simple and 
necessary modifications to suit our peptide property prediction param-
eters. The resulting optimized hyperparameters are then employed to 
construct RGCN submodels with different random seeds. These ten 
submodels are subsequently integrated to form a consensus model. 

Our model can also handle linear and cyclic peptides with Cys-Cys 
disulfide bonds as well as the peptides for targeting different targets. 
However, we first need to screen against the target protein to gather 
enrichment and partial activity data before training and testing. 
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FC fully connected 
FIT flexible in vitro translation 
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GCNs graph convolutional networks 
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IC50 50 % inhibitory concentration 
IL-17C interleukin-17C; IL-17RE, interleukin-17 receptor E 
KNN K-nearest neighbors 
MACCS molecular access system keys 
MeCN acetonitrile 
NCAAs non-canonical amino acids 
PepBERT BERT model for peptide regression 
PPIs protein-protein interactions 
QSAR quantitative structure-activity relationships 
RaPID random non-standard peptide integrated discovery 
RF random forest 
RGCNs relational graph convolutional networks 
R2 coefficient of determination 
RMSE root mean square error 
RT room temperature 
SAR structure-activity relationships 
SME substructure mask explanation 
SVM support vector machine 
TFA trifluoroacetic acid 
t-SNE t-distributed stochastic neighbor embedding 
TMB 3,3′,5,5′-tetramethylbenzidine 
VHSE principal components score vectors of hydrophobic, steric, 

and electronic properties 
WHIM weighted holistic invariant molecular descriptors 
XAI explainable artificial intelligence 
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[22] J. Jiménez-Luna, F. Grisoni, G. Schneider, Drug discovery with explainable 
artificial intelligence, Nat. Mach. Intell. 2 (2020) 573–584, https://doi.org/ 
10.1038/s42256-020-00236-4. 

[23] R.L. Marchese Robinson, A. Palczewska, J. Palczewski, N. Kidley, Comparison of 
the predictive performance and interpretability of random forest and linear models 
on benchmark data sets, J. Chem. Inf. Model. 57 (2017) 1773–1792, https://doi. 
org/10.1021/acs.jcim.6b00753. 

[24] F. Grisoni, V. Consonni, D. Ballabio, Machine learning consensus to predict the 
binding to the androgen receptor within the CoMPARA Project, J. Chem. Inf. 
Model. 59 (2019) 1839–1848, https://doi.org/10.1021/acs.jcim.8b00794. 

[25] Y. Chen, C. Stork, S. Hirte, J. Kirchmair, NP-scout: machine learning approach for 
the quantification and visualization of the natural product-likeness of small 
molecules, Biomolecules 9 (2019), https://doi.org/10.3390/biom9020043. 

[26] A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, 
J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, 
R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, 
A. Tropsha, QSAR modeling: where have you been? Where are you going to? 
J. Med. Chem. 57 (2014) 4977–5010, https://doi.org/10.1021/jm4004285. 

[27] M.F. Sanner, K. Zoghebi, S. Hanna, S. Mozaffari, S. Rahighi, R.K. Tiwari, K. Parang, 
Cyclic peptides as protein kinase inhibitors: structure–activity relationship and 
molecular modeling, J. Chem. Inf. Model. 61 (2021) 3015–3026, https://doi.org/ 
10.1021/acs.jcim.1c00320. 

[28] T. Tian, S. Li, M. Fang, D. Zhao, J. Zeng, MolSHAP: interpreting quantitative 
structure–activity relationships using shapley values of R-groups, J. Chem. Inf. 
Model. (2023), https://doi.org/10.1021/acs.jcim.3c00465. 

[29] G.B. Goh, C. Siegel, A. Vishnu, N.O. Hodas, N. Baker, Chemception: a deep neural 
network with minimal chemistry knowledge matches the performance of expert- 
developed QSAR/QSPR models. https://arxiv.org/abs/1706.06689, 2017. 

[30] E.B. Lenselink, N. ten Dijke, B. Bongers, G. Papadatos, H.W.T. van Vlijmen, 
W. Kowalczyk, A.P. Ijzerman, G.J.P. van Westen, Beyond the hype: deep neural 
networks outperform established methods using a ChEMBL bioactivity benchmark 
set, J. Cheminf. 9 (2017) 45, https://doi.org/10.1186/s13321-017-0232-0. 

[31] C. Rudin, Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead, Nat. Mach. Intell. 1 (2019) 
206–215, https://doi.org/10.1038/s42256-019-0048-x. 

[32] G.P. Wellawatte, A. Seshadri, A.D. White, Model agnostic generation of 
counterfactual explanations for molecules, Chem. Sci. 13 (2022) 3697–3705, 
https://doi.org/10.1039/D1SC05259D. 

[33] M. Gupta, H.J. Lee, C.J. Barden, D.F. Weaver, The blood–brain barrier (BBB) score, 
J. Med. Chem. 62 (2019) 9824–9836, https://doi.org/10.1021/acs. 
jmedchem.9b01220. 

[34] P.D. Leeson, R.J. Young, Molecular property design: does everyone get it? ACS 
Med. Chem. Lett. 6 (2015) 722–725, https://doi.org/10.1021/ 
acsmedchemlett.5b00157. 

[35] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, T. Langer, 
A compact review of molecular property prediction with graph neural networks, 
Drug Discov. Today Technol. 37 (2020) 1–12, https://doi.org/10.1016/j. 
ddtec.2020.11.009. 

[36] F. Baldassarre, H. Azizpour, Explainability techniques for graph convolutional 
networks, ArXiv. abs/1905 (2019) 13686. 

[37] Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, 
K. Leswing, V. Pande, MoleculeNet: a benchmark for molecular machine learning, 
Chem. Sci. 9 (2018) 513–530, https://doi.org/10.1039/C7SC02664A. 

[38] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, Molecular graph 
convolutions: moving beyond fingerprints, J. Comput. Aided Mol. Des. 30 (2016) 
595–608, https://doi.org/10.1007/s10822-016-9938-8. 

[39] W. Jin, R. Barzilay, T. Jaakkola, Junction tree variational autoencoder for 
molecular graph generation, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th 
International Conference on Machine Learning, PMLR, 2018-07-10/2018-07-15, 
pp. 2323–2332. 

[40] Z. Wu, J. Wang, H. Du, D. Jiang, Y. Kang, D. Li, P. Pan, Y. Deng, D. Cao, C.- 
Y. Hsieh, T. Hou, Chemistry-intuitive explanation of graph neural networks for 
molecular property prediction with substructure masking, Nat. Commun. 14 
(2023) 2585, https://doi.org/10.1038/s41467-023-38192-3. 

[41] J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, On the art of compiling and 
using ’drug-like’ chemical fragment spaces, ChemMedChem 3 (2008) 1503–1507, 
https://doi.org/10.1002/cmdc.200800178. 

[42] G.W. Bemis, M.A. Murcko, The properties of known drugs. 1. Molecular 
frameworks, J. Med. Chem. 39 (1996) 2887–2893, https://doi.org/10.1021/ 
jm9602928. 

[43] Y. Hu, D. Stumpfe, J. Bajorath, Computational exploration of molecular scaffolds in 
medicinal chemistry, J. Med. Chem. 59 (2016) 4062–4076, https://doi.org/ 
10.1021/acs.jmedchem.5b01746. 

[44] C. Cai, S. Wang, Y. Xu, W. Zhang, K. Tang, Q. Ouyang, L. Lai, J. Pei, Transfer 
learning for drug discovery, J. Med. Chem. 63 (2020) 8683–8694, https://doi.org/ 
10.1021/acs.jmedchem.9b02147. 

[45] R.S. Simões, V.G. Maltarollo, P.R. Oliveira, K.M. Honorio, Transfer and multi-task 
learning in QSAR modeling: advances and challenges, Front. Pharmacol. 9 (2018) 
74, https://doi.org/10.3389/fphar.2018.00074. 

[46] Y. Chu, Y. Zhang, Q. Wang, L. Zhang, X. Wang, Y. Wang, D.R. Salahub, Q. Xu, 
J. Wang, X. Jiang, Y. Xiong, D.-Q. Wei, A transformer-based model to predict 
peptide–HLA class I binding and optimize mutated peptides for vaccine design, 
Nat. Mach. Intell. 4 (2022) 300–311, https://doi.org/10.1038/s42256-022-00459- 
7. 

[47] X.-C. Zhang, C.-K. Wu, Z.-J. Yang, Z.-X. Wu, J.-C. Yi, C.-Y. Hsieh, T.-J. Hou, D.- 
S. Cao, MG-BERT: leveraging unsupervised atomic representation learning for 
molecular property prediction, Briefings Bioinf. 22 (2021) bbab152, https://doi. 
org/10.1093/bib/bbab152. 

[48] P. Charoenkwan, C. Nantasenamat, M.M. Hasan, B. Manavalan, W. Shoombuatong, 
BERT4Bitter: a bidirectional encoder representations from transformers (BERT)- 
based model for improving the prediction of bitter peptides, Bioinformatics 37 
(2021) 2556–2562, https://doi.org/10.1093/bioinformatics/btab133. 

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, 
I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg, S. Bengio, 
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural 
Information Processing Systems, Curran Associates, Inc., 2017. 

[50] M.-L. Lee, S. Farag, J.S. Del Cid, C. Bashore, K.K. Hallenbeck, A. Gobbi, C. 
N. Cunningham, Identification of macrocyclic peptide families from combinatorial 
libraries containing noncanonical amino acids using cheminformatics and 
bioinformatics inspired clustering, ACS Chem. Biol. 18 (2023) 1425–1434, https:// 
doi.org/10.1021/acschembio.3c00159. 

[51] R. Zhang, H. Wu, Y. Xiu, K. Li, N. Chen, Y. Wang, Y. Wang, X. Gao, F. Zhou, 
PepLand: a large-scale pre-trained peptide representation model for a 
comprehensive landscape of both canonical and non-canonical amino acids. htt 
ps://arxiv.org/abs/2311.04419, 2023. 

[52] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, M. Welling, 
Modeling relational data with graph convolutional networks, in: A. Gangemi, 
R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, M. Alam (Eds.), 
The Semantic Web, Springer International Publishing, Cham, 2018, pp. 593–607. 

[53] E. Fix, J.L. Hodges, Discriminatory analysis. Nonparametric discrimination: 
consistency properties, Int. Stat. Rev./Rev. Int. Stat. 57 (1989) 238–247, https:// 
doi.org/10.2307/1403797. 

[54] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140, https://doi.org/ 
10.1007/BF00058655. 

[55] Jerome H. Friedman, Greedy function approximation: a gradient boosting 
machine, Ann. Stat. 29 (2001) 1189–1232, https://doi.org/10.1214/aos/ 
1013203451. 

[56] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and 
Other Kernel-Based Learning Methods, 2010. 

[57] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 
(2010) 742–754, https://doi.org/10.1021/ci100050t. 

[58] J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, Reoptimization of MDL keys for 
use in drug discovery, J. Chem. Inf. Comput. Sci. 42 (2002) 1273–1280, https:// 
doi.org/10.1021/ci010132r. 

[59] G. Bravi, E. Gancia, P. Mascagni, M. Pegna, R. Todeschini, A. Zaliani, MS-WHIM, 
new 3D theoretical descriptors derived from molecular surface properties: a 
comparative 3D QSAR study in a series of steroids, J. Comput. Aided Mol. Des. 11 
(1997) 79–92, https://doi.org/10.1023/A:1008079512289. 

[60] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep 
bidirectional transformers for language understanding, CoRR (2018) 04805 abs/ 
1810, https://arxiv.org/abs/1810.04805. 

[61] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9 
(2008) 2579–2605. 

[62] M. Ansari, A.D. White, Serverless prediction of peptide properties with recurrent 
neural networks, J. Chem. Inf. Model. 63 (2023) 2546–2553, https://doi.org/ 
10.1021/acs.jcim.2c01317. 

S. Zhai et al.                                                                                                                                                                                                                                     

https://doi.org/10.1038/s41586-021-04220-9
https://doi.org/10.1038/s41586-021-04220-9
https://doi.org/10.1073/pnas.2010470117
https://doi.org/10.1021/acs.chemrev.8b00430
https://doi.org/10.1021/acs.chemrev.8b00430
https://doi.org/10.1021/ja301017y
https://doi.org/10.1016/j.tips.2021.02.004
https://doi.org/10.1016/j.tips.2021.02.004
https://doi.org/10.1038/nmeth877
https://doi.org/10.1038/nprot.2011.331
https://doi.org/10.1021/acs.accounts.1c00391
https://doi.org/10.1021/acs.accounts.1c00391
https://doi.org/10.1021/acscentsci.3c00957
https://doi.org/10.1021/acs.jmedchem.3c00627
https://doi.org/10.1021/acscentsci.2c00223
https://doi.org/10.1021/acscentsci.2c00223
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1021/acs.jcim.6b00753
https://doi.org/10.1021/acs.jcim.6b00753
https://doi.org/10.1021/acs.jcim.8b00794
https://doi.org/10.3390/biom9020043
https://doi.org/10.1021/jm4004285
https://doi.org/10.1021/acs.jcim.1c00320
https://doi.org/10.1021/acs.jcim.1c00320
https://doi.org/10.1021/acs.jcim.3c00465
https://arxiv.org/abs/1706.06689
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1039/D1SC05259D
https://doi.org/10.1021/acs.jmedchem.9b01220
https://doi.org/10.1021/acs.jmedchem.9b01220
https://doi.org/10.1021/acsmedchemlett.5b00157
https://doi.org/10.1021/acsmedchemlett.5b00157
https://doi.org/10.1016/j.ddtec.2020.11.009
https://doi.org/10.1016/j.ddtec.2020.11.009
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref36
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref36
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1007/s10822-016-9938-8
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref39
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref39
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref39
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref39
https://doi.org/10.1038/s41467-023-38192-3
https://doi.org/10.1002/cmdc.200800178
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/acs.jmedchem.5b01746
https://doi.org/10.1021/acs.jmedchem.5b01746
https://doi.org/10.1021/acs.jmedchem.9b02147
https://doi.org/10.1021/acs.jmedchem.9b02147
https://doi.org/10.3389/fphar.2018.00074
https://doi.org/10.1038/s42256-022-00459-7
https://doi.org/10.1038/s42256-022-00459-7
https://doi.org/10.1093/bib/bbab152
https://doi.org/10.1093/bib/bbab152
https://doi.org/10.1093/bioinformatics/btab133
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref49
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref49
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref49
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref49
https://doi.org/10.1021/acschembio.3c00159
https://doi.org/10.1021/acschembio.3c00159
https://arxiv.org/abs/2311.04419
https://arxiv.org/abs/2311.04419
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref52
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref52
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref52
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref52
https://doi.org/10.2307/1403797
https://doi.org/10.2307/1403797
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref56
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref56
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci010132r
https://doi.org/10.1023/A:1008079512289
https://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref61
http://refhub.elsevier.com/S0223-5234(24)00508-7/sref61
https://doi.org/10.1021/acs.jcim.2c01317
https://doi.org/10.1021/acs.jcim.2c01317


European Journal of Medicinal Chemistry 275 (2024) 116628

13

[63] M.L. Merz, S. Habeshian, B. Li, J.-A.G.L. David, A.L. Nielsen, X. Ji, K. Il Khwildy, M. 
M. Duany Benitez, P. Phothirath, C. Heinis, De novo development of small cyclic 
peptides that are orally bioavailable, Nat. Chem. Biol. 20 (2024) 624–633, https:// 
doi.org/10.1038/s41589-023-01496-y. 

[64] P. Schwaller, D. Probst, A.C. Vaucher, V.H. Nair, D. Kreutter, T. Laino, J.- 
L. Reymond, Mapping the space of chemical reactions using attention-based neural 
networks, Nat. Mach. Intell. 3 (2021) 144–152, https://doi.org/10.1038/s42256- 
020-00284-w. 

[65] D. van Tilborg, A. Alenicheva, F. Grisoni, Exposing the limitations of molecular 
machine learning with activity cliffs, J. Chem. Inf. Model. 62 (2022) 5938–5951, 
https://doi.org/10.1021/acs.jcim.2c01073. 

[66] W.P. Walters, M.A. Murcko, Prediction of “drug-likeness,”, Comp. Method.Pred. 
ADME.Toxi. 54 (2002) 255–271, https://doi.org/10.1016/S0169-409X(02)00003- 
0. 

[67] H. ElAbd, Y. Bromberg, A. Hoarfrost, T. Lenz, A. Franke, M. Wendorff, Amino acid 
encoding for deep learning applications, BMC Bioinf. 21 (2020) 235, https://doi. 
org/10.1186/s12859-020-03546-x. 

[68] A.G. Georgiev, Interpretable numerical descriptors of amino acid space, J. Comput. 
Biol. 16 (2009) 703–723, https://doi.org/10.1089/cmb.2008.0173. 

[69] H. Mei, Z.H. Liao, Y. Zhou, S.Z. Li, A new set of amino acid descriptors and its 
application in peptide QSARs, Peptide.Sci. 80 (2005) 775–786, https://doi.org/ 
10.1002/bip.20296. 

S. Zhai et al.                                                                                                                                                                                                                                     

https://doi.org/10.1038/s41589-023-01496-y
https://doi.org/10.1038/s41589-023-01496-y
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1021/acs.jcim.2c01073
https://doi.org/10.1016/S0169-409X(02)00003-0
https://doi.org/10.1016/S0169-409X(02)00003-0
https://doi.org/10.1186/s12859-020-03546-x
https://doi.org/10.1186/s12859-020-03546-x
https://doi.org/10.1089/cmb.2008.0173
https://doi.org/10.1002/bip.20296
https://doi.org/10.1002/bip.20296

	PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimiz ...
	1 Introduction
	2 Results and discussion
	2.1 Using PepExplainer with transfer learning strategy to predict the bioactivity of macrocyclic peptides
	2.2 Comparison of PepExplainer with baseline models
	2.3 The interpretability of PepExplainer for macrocyclic peptides
	2.4 Application in bioactivity prediction and optimization

	3 Conclusion
	4 Methods
	4.1 Datasets
	4.2 Amino acids substructure mask explanation
	4.3 Traditional machine learning strategy
	4.4 PepBERT
	4.5 Chemical synthesis of the macrocyclic peptides
	4.6 Evaluation of macrocyclic peptides
	4.7 Data and software availability

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Abbreviations
	Appendix A Supplementary data
	References


