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ABSTRACT: The combination of library-based screening and
artificial intelligence (AI) has been accelerating the discovery and
optimization of hit ligands. However, the potential of AI to assist in
de novo macrocyclic peptide ligand discovery has yet to be fully
explored. In this study, an integrated AI framework called PepScaf
was developed to extract the critical scaffold relative to bioactivity
based on a vast dataset from an initial in vitro selection campaign
against a model protein target, interleukin-17C (IL-17C). Taking
the generated scaffold, a focused macrocyclic peptide library was
rationally constructed to target IL-17C, yielding over 20 potent
peptides that effectively inhibited IL-17C/IL-17RE interaction.
Notably, the top two peptides displayed exceptional potency with
IC50 values of 1.4 nM. This approach presents a viable methodology for more efficient macrocyclic peptide discovery, offering
potential time and cost savings. Additionally, this is also the first report regarding the discovery of macrocyclic peptides against IL-
17C/IL-17RE interaction.

■ INTRODUCTION
Pharmaceutical research and development are estimated to
cost hundreds of millions of dollars and take an average cycle
longer than 10 years.1,2 The emergence of library-based
screening combined with artificial intelligence (AI) has been
streamlining and accelerating the discovery and optimization of
hit ligands.3−5 Library-based screening strategies, e.g., DNA-
encoded chemical library (DEL) technology, enable for the
deep exploration of large chemical space, which affords
simultaneous readout of millions to billions of compounds
against targets of interest.6−8 AI-driven drug discovery has also
embraced a growing number of successes with recent advances
in computing power and availability of large datasets. With the
assistance of AI, a highly active, selective, and bioavailable
inhibitor of discoidin domain receptor-1 (DDR1) was
successfully identified within 21 days.9 A SMILES-based
recurrent neural network (RNN) model, trained on a large
set of known bioactive compounds, was also utilized to
generate the agonists of retinoid X receptor (RXR) and
peroxisome proliferator-activated receptor (PPAR) by Merk.8

Given that the library-based screening strategies are capable of
covering a large chemical space, AI based on the vast datasets
could be a valuable tool for further improving the hit discovery
efficiency. Several cases of DEL integrated with AI have been
reported. McCloskey et al. successfully performed machine
learning modeling using the data obtained from DEL screening

against the targets including sEH (a hydrolase), Erα (a nuclear
receptor), and c-KIT (a kinase).10 Another example came from
Lim et al., who combined DEL and machine learning for
efficient screenings against carbonic anhydrase (CAIX), soluble
epoxide hydrolase (sEH), and sirtuin 2 (SIRT2).11 The results
of these studies highlight the significant potential for
streamlining drug discovery through the utilization of library-
based screening techniques in conjunction with AI.
In recent years, transformer models12 have become more

and more prevalent in the field of natural language processing
(NLP). Based on the transformer model, Devlin et al.
introduced a new language representation model called
bidirectional encoder representations from transformers
(BERT), which produced the state-of-the-art results in a
variety of NLP tasks.13 Nowadays, with the advent of large
models and an equally large amount of pre-training being
done, BERT has played an important role in various areas,
including drug development.14,15 The BERT model features
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analysis on the basis of the mechanism of attention.16−18

Attention weight, as a measure of importance, offers an easy
and effective way to identify which elements are responsible for
an output. According to the attention mechanism, a recent
study proposed a program to search for mutant peptides with
higher affinity for the target, human leukocyte antigen (HLA)
allele.19 While linear peptides have been the primary focus of
previous studies, there is still significant untapped potential in
the use of AI to assist in the discovery of macrocyclic peptide
ligands, particularly through the integration of library-based
screening methods.
Macrocyclic peptides have recently become an attractive

modality for the development of therapeutics due to synthetic
accessibility, high specificity, and tissue penetration, low
toxicity, as well as the capability to block the protein−protein
or protein−nucleic acid interaction.20−25 Macrocyclic peptide
libraries can be constructed by one-bead-one-compound
(OBOC),26 phage display,27 split-intein circular ligation of
peptides and proteins (SICLOPPS),28 mRNA display,29,30 etc.
An excellent platform, referred to as the random non-standard
peptide integrated discovery (RaPID) system, integrates the
flexible in vitro translation (FIT) system31,32 with mRNA
display. It enables rapid selection of various de novo pseudo-
natural peptide ligands from the thioether-closed macrocyclic
peptide libraries with huge diversity (>1012 unique sequences)
against the desired targets.30,33,34 One desired target,
interleukin-17C (IL-17C), a unique IL-17 cytokine family
member, can specifically bind to interleukin-17 receptor E (IL-
17RE) that is expressed on both epithelial cells and TH17 cells
and signal by a heterodimeric receptor complex IL-17RA/RE.
The downstream adaptor Act1 can then be recruited and
induce the signaling pathways for autoimmunity, inflammation,
host defense, etc.35−39 Blocking the interaction between IL-
17C and IL-17RE has shed light on the potential to treat
autoimmune and inflammatory diseases, e.g., psoriasis and
atopic dermatitis. However, there is no report of macrocyclic
peptides that can block the IL-17C/IL-17RE interaction.
In this study, we report on the development of an integrated

AI framework called PepScaf to direct the rational construction
of a focused macrocyclic peptide library (17C-Lib2) by

leveraging the vast dataset of sequence information generated
from the initial in vitro selection campaign against IL-17C
using a primary macrocyclic peptide library (17C-Lib1). A
model based on BERT was adopted for training the
enrichment data obtained from the fourth round of 17C-
Lib1, aiming to obtain structural information about the activity
and convert it into positional importance scores. Then, the
Monte Carlo tree search (MCTS) algorithm was utilized to
explore macrocyclic peptides in clustering data, for the purpose
of generating a common scaffold found in a significant
proportion of the peptide sequences. Using the scaffold that
was generated, six critical positions in the middle of peptide
sequences were fixed to construct the focused library, which
was subsequently subjected to further selection against IL-17C
by using the RaPID system. Finally, we obtained 20 peptides
with IC50 values below 10 nM. In particular, the best two
macrocyclic peptides exhibited their notable inhibitory
activities against IL-17C/IL-17RE interaction with both IC50
values at 1.4 nM (Figure 1).

■ RESULTS AND DISCUSSION
In Vitro Selection of Macrocyclic Peptides against IL

17C/IL-17RE Interaction Using 17C-Lib1 by the RaPID
System. In vitro selection by the RaPID system, which
employs a macrocyclic peptide library containing over 1012
molecules, coupled with next-generation sequencing, can
generate an extensive dataset of sequence information,
precisely the kind of data required for machine learning.
Thus, we first performed an in vitro affinity-based selection
against a model target protein, IL-17C, by using the RaPID
system (Figure 2a,b). An mRNA library consisting of AUG-
(NNK)8‑12-UGC-(GGC-AGC)3-UAG was designed, in which
NNK was assigned to encode random sequences (N and K
represent any of the four bases and U or G, respectively). The
initiator AUG codon in the mRNA library was assigned to N-
chloroacetyl-L-Tyr, which could simultaneously react with the
cysteine (C) encoded by the downstream UGC to afford the
thioether macrocyclic peptides. A glycine−serine (GS) triple-
repeat peptide linker was encoded by the (GGC-AGC)3 repeat

Figure 1. Schematic of the de novo macrocyclic peptides against IL-17C/IL-17RE interaction identified by the RaPID system integrated with the
PepScaf framework. Left: the initial in vitro selection against IL-17C using 17C-Lib1. Middle: parallel clustering analysis and classification learning
using Pep-BERT. Pep-BERT trained on the enrichment data obtained from the fourth round of 17C-Lib1 provided positional importance scores as
the initial input for MCTS, which was employed in conjunction with clustering to generate the peptide scaffold. Right: the secondary selection
against IL-17C was performed using 17C-Lib2 (a focused library that was constructed by taking the generated scaffold).
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codons, and the UAG stop codon was used to stall ribosome.
After ligating a puromycin-CC-PEG-linker-DNA fragment with
the mRNA library, the resulting mRNA-Pu library was
subsequently added into the release factor 1 (RF1)-omitted
FIT system to in vitro express a displayed macrocyclic peptide
library, referred to as 17C-Lib1, in which the cognate genotype
mRNA and the phenotype peptide were covalently linked via
puromycin. The library was designed to boast a huge diversity
(over 1012 unique sequences), allowing us to conduct affinity-
based peptide screening against IL-17C immobilized on
magnetic beads. The selection was performed for four rounds,

and the enriched cDNA library in each round was separately
analyzed by next-generation DNA sequencing (NGS).
Next, we built an enrichment dataset of the fourth round in

17C-Lib1 (17C-Lib1-4th), containing 365,680 valid macro-
cyclic peptides after data cleaning. According to the hit
enrichment value of each macrocyclic peptide, the top 20
macrocyclic sequences were chosen for synthesis, and 15
peptides that met the desired purity criteria (>95%) were
obtained (Figure 2c). Competitive enzyme-linked immuno-
sorbent assay (ELISA) was then applied for determining the
50% inhibitory concentration (IC50) values of the synthesized

Figure 2. (a) Schematic of the RaPID system; (b) macrocyclic peptides against IL-17C/IL-17RE interaction; and (c) selected top 15 peptides:
sequences, enrichment value in 17C-Lib1-4th, number in cluster, and IC50 values as determined by ELISA. Each amino acid in the peptide
sequence was labeled using the corresponding single-letter abbreviation, like elsewhere in the text. The IC50 value (>30,000) suggests that the
inhibitory activity of the macrocyclic peptide was weak, with less than half of the expected effect observed even at the highest concentration (30,000
nM). (d) Visualization of clustering in 17C-Lib1-4th by uniform manifold approximation and projection (UMAP). The target cluster containing
17C-L20 is highlighted and circled in red; Figure S2 provides a detailed representation of the clusters encompassing individual macrocyclic
peptides. (e) Sequence logo of the amino acid frequency at each position of the selected top 15 peptide clusters (from top-left to bottom-right
following the order decreasing enrichment). The target sequence logo is boxed in red.
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macrocyclic peptides against the interaction between IL-17C
and IL-17RE. Unfortunately, only one macrocyclic peptide,
17C-L20, was demonstrated to be a potential inhibitor with an
IC50 value of 166 nM. It was speculated that 17C-L20, despite
its moderate potency, could precisely target the site responsible

for disrupting the protein−protein interaction. In contrast,
other peptides might bind to non-inhibitory locations. To
obtain some peptides with improved bioactivity, we also tried
to choose more peptides from 17C-Lib1-4th on the basis of the
similarity to the top 15 hits. We first fished out all of the

Figure 3. (a) Sequences and IC50 values of 17C-L20, selected top 23 peptides in the target cluster and the other two control peptides (L20-Ctrl1
and L20-Ctrl2) with distinct sequences. The amino acids generated by PepScaf are labeled in red, while distinct amino acids from this set are
labeled in blue; (b) protocol of PepScaf: the architecture of Pep-BERT and the procedure of MCTS and (c) definition of the macrocyclic peptide
scaffold. Pep-BERT performed importance ranking of 12 positions, with the first six positions selected as the fixed part and the subsequent six
positions designated as the variable part based on the scores in this work. The MCTS generated corresponding amino acids at those positions, with
“X” indicating variable amino acids (colored in green).
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macrocyclic peptides with similar threshold (80%) to the
selected top 15 peptides from 17C-Lib1-4th using the CD-HIT
clustering tool40 and subsequently gave a visualization of
clustering by uniform manifold approximation and projection
(UMAP).41 It can be seen that the target cluster containing
17C-L20 (circled in red) is far away from the other clusters,
suggesting certain structural specificity (Figures 2d and S2). In
addition, the WebLogo tool42 was used to statistic amino acid
frequencies at every position of the clustered peptide
sequences, and the sequence logos are shown in Figure 2e. It
was found that the amino acid at each position of 17C-L20 had
the highest frequency, suggesting that 17C-L20 might have
already been selected as the most potential sequence in 17C-
Lib1-4th against IL-17C/17-RE interaction. To check whether
we could find other peptides with stronger inhibitory activities,
we further chose, synthesized, and evaluated the other 23
peptides from the remaining 99 macrocyclic peptides in the
same cluster as 17C-L20 (circled in red). While all of them
exhibited lower activities than 17C-L20, two or three peptides
demonstrated comparable activities to 17C-L20 as presented in
Figure 3a.
Generation of the Critical Scaffold Related to the

Bioactivity from the PepScaf Framework. With 17C-L20
as a hit in our hands, we next sought assistance from a focused
library in order to further optimize the 17C-L20 hit ligand. A
focused library constructed using the fragmented saturation
mutagenesis approach by pooling together 49 sub-libraries,
where each sub-library encodes the hit peptide interspersed
with NNK codons, has been previously applied for peptide
affinity maturation by the RaPID system.43 This approach
allowed for saturation mutagenesis at several different positions
at the same time and finally afforded a peptide, PB1m6A9,
which showed over 10-fold improvement in binding affinity for
human PlxnB1 and also gained strong binding affinity to
mouse PlxnB1.43 In a different approach, we proposed to more
rationally construct a focused library by integrating the power
of AI tools using the dataset generated from the initial
selection, under the context of lacking the cocrystal structures
that could reveal how these molecules interact with protein
surfaces. To do so, we proposed a framework termed PepScaf
to direct the rational construction of a focused library. The
scheme of PepScaf consisted of two main modules, a Pep-
BERT classifier and the MCTS algorithm, which are depicted
in Figure 3b.
The better and more intuitive way to find the most potential

macrocyclic peptide hits is to build a quantitative structure−
activity relationship (QSAR) model because it provides
accurate predictions of measured end points instead of an
independent ranking of biological activity.36 Deep learning can
effectively extract the desired chemical and physical features for
a related task.44 With respect to drug discovery, these features
can include molecular structures, chemical properties, and
other important characteristics. Additionally, models can
search through large and complex chemical space,45 which is
particularly useful in the field of drug development where the
optimization space can be discontinuous and challenging to
navigate.46 This means that deep learning can explore a wide
range of possibilities and identify relationships between
molecular structures and their biological activity, even in
cases where the relationship is not immediately obvious.
However, the success of such an approach heavily depends on
the availability of a great amount of high-quality bioactivity
data. Besides, the QSAR models lack the transferability due to

the target-specific design of each approach.47 Thus, it is
difficult to build such an effective and practical QSAR model
for a novel target by using a deep learning model. Alternatively,
we could build a pseudo-QSAR model (enrichment values as
metrics) according to the hypothesis that the top enriched
peptides tend to more likely have high binding affinity.48,49

The definition of the macrocyclic peptide scaffold is depicted
in Figure 3c.
At first, we ranked the position index according to the

position importance scores as provided by Pep-BERT, which
was trained based on the enrichment data of each peptide in
17C-Lib1-4th. Since the start Y and the end CG were involved
in ring formation, these three positions were not counted in
the length calculation of the scaffold. Based on the scores at 12
positions as given by Pep-BERT, six positions with lower
scores were specified as the fixed part (orange part in Figure
3c), and the variable part in green has positions with higher
scores. The fixed positions and variable positions constituted a
scaffold in a length of 12 (the position indexed from 1 to 12).
Therefore, the valuable position information involving the
activity was obtained after training on the vast enrichment data
by a deep learning model, Pep-BERT.
Given the advantages of deep learning in feature extraction

and the advantages of the algorithm as a chemical space
exploration strategy, we further integrated the algorithm with
deep learning in this work. A great number of tools50−53 based
on different classical algorithms such as the genetic algorithm54

(GA) and the Monte Carlo (MC) method55 have been applied
for de novo molecular design over the past few decades. We
first modified traditional algorithms including genetic algo-
rithms to handle the discrete peptide sequences for the
generation of the scaffold, but the results could not converge
under limited time or computational resources. The possible
reasons were speculated as follows: (1) the vast search space
requires constraints to reduce the computation complexity, (2)
data sensitivity of the traditional algorithms leads to the failing
to handle the activity (enrichment) cliff56 because the
macrocyclic peptides have short and similar sequences (differ
at only several amino acids), but the enrichment metrics can
change greatly, and (3) the obscure characteristic of enrich-
ment values because it is an indicator of confounding by
multiple factors. We subsequently developed an effective and
practical search-driven approach, leveraging the power of
MCTS. Our approach focused on identifying amino acid
residues that constitute the fixed part of the structure. To
achieve this, we employed MCTS, guided by carefully designed
growth rules aimed at maximizing the exploration of promising
amino acids within the search space. These growth rules struck
a delicate balance between exploration and exploitation, taking
into account the generation of new amino acids as well as the
utilization of those already generated. Through the incorpo-
ration of the reward function during backpropagation, the
MCTS algorithm gradually learnt to prioritize peptide scaffolds
that have a higher likelihood of satisfying a significant
proportion of the peptides within the target cluster. Addition-
ally, the efficacy of the scaffold could also be assessed by
evaluating the number of peptides with low IC50 values that
conform to the scaffold by adjusting its parameters and settings
of MCTS. It was deduced that six positions comprising
positions 3, 4, 7, 8, 9, and 11 seemed to be essential to the
activity of 17C-L20, while the variable positions could be
positions 1, 2, 5, 6, 10, and 12. Therefore, the scaffold
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(XXYYXXLYGXLX) was generated, where “X” represents a
variable position that can be optimized.
Rationality Investigation of the Generated Critical

Scaffold from the PepScaf Framework. Next, we
investigated the rationality of the proposed scaffold by the
PepScaf framework according to the laboratory results as listed
in Figure 3a. With respect to the variable position, the
replacement from I (17C-L20; IC50 = 166 nM) at position 6 to
T (L20-3; IC50 = 288 nM) or V (L20-5; IC50 = 414 nM)
showed only slightly decreased activities. This can also be seen
by replacing position 10 (from E in 17C-L20 to V in L20-7). In
contrast, position 3 was defined as a fixed position, at which
the amino acid was replaced from Y (17C-L20) to H (L20-13;
IC50 = 6849 nM) or N (L20-15; IC50 = 30,000 nM), causing
the bioactivity cliffs. The activity cliffs can also be observed by
replacing Y (17C-L20) at position 8 to H (L20-17; IC50 =
30,000 nM), G at position 9 to S (L20-9; IC50 = 1337 nM),
and L at position 11 to P (L20-21; IC50 = 30,000 nM),
suggesting the critical role of the amino acids in the fixed
region to the bioactivity of 17C-L20. We additionally analyzed
two peptides with distinct sequences from the scaffold, L20-
Ctrl1 and L20-Ctrl2, whose IC50 values were 14,660 and
30,000, respectively. This also proved the effectiveness of the
generated scaffold from the other aspect.
Before following the guidelines provided by this scaffold, we

additionally apply alanine-scanning mutagenesis57 to double-
confirm the reliability of our scaffold. As can be seen from
Figure 4b, the activity of 17C-L20 almost destroyed upon the
replacement of amino acid at position 3, 4, 7, 8, or 11 to
alanine (A), indicating that these positions are critical
contributors to the overall activity. Apart from position 1,
the substitution of residue position 2, 5, 6, 10, or 12 with A
exhibited slight to moderate reduction of inhibitory activity. It
should be noted that the replacement of the H residue at
position 1 led to a poor inhibitory performance, while the
module suggested that this position if variable. Despite the
existence of misjudgment, the model results were almost

consistent with the alanine scan results. This suggests the
reliability of the PepScaf framework, which provides a “virtual
alanine scanning” approach for identifying the crucial positions
that can be used for constructing a focused library.58 This
approach holds potential for saving time and costs (refer to
Tables S1−S3).
In Vitro Selection of Macrocyclic Peptides against IL-

17C/IL-17RE Interaction Using a Focused Library (17C-
Lib2) by the RaPID System and Data Analysis. Taking
only one template containing the generated scaffold (Table
S3), we constructed a focused library (17C-Lib2) and utilized
the RaPID system once more to conduct in vitro selection
against IL-17C. The remarkably higher recovery rates from first
round to third round compared to the recovery rates of the
equivalent rounds from the selection using the primary library
also suggested the validity of the generated peptide scaffold by
the PepScaf protocol (Figure S1). The isolated cDNA libraries
were subjected to NGS, and 27 macrocyclic peptides were
chosen based on their corresponding enrichment values and
chemically synthesized (Figure 5a,b). The determined IC50
values are presented in Figure 5b. The IC50 values ranged from
1.4 to 48.8 nM, and 20 of 27 peptides exhibited notably
improved inhibitory activities (IC50 < 10 nM) against IL-17C/
IL-17RE interaction. The two most potent peptides, Lib2-1
and Lib2-2, exhibited over 100-fold improvements in activity
compared to 17C-L20. Even the least active one in these 27
peptides, Lib2-27, was also demonstrated to be over 3 times
more potent than 17C-L20. Overall, we concluded that the
activity against IL-17C/IL-17RE was significantly improved by
establishing a focused library under the guidance of AI. Our
strategy to constructing a focused library with several critical
residues, which is worth mentioning, might be more rational
and efficient than pooling together 49 relatively random sub-
libraries, as previously reported.43 By adopting this new
strategy, we could anticipate a significant reduction in the
occurrence of undesired peptides within the focused library
(Table S3). This holds great potential for enhancing the

Figure 4. (a) Chemical structure of 17C-L20. The fixed amino acids generated by PepScaf are highlighted in orange. Amino acids involved in
cyclization are labeled in red and (b) results of alanine scanning mutagenesis of 17C-L20.
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overall quality and specificity of the focused library, thereby
facilitating the discovery of more specific macrocyclic peptides.
To better illustrate and compare the data of the bioactivities

in Lib1-Bio (Figure 3a; bioactivities of 17C-L20, L20-1 to 23)
and Lib2-Bio (Figure 5b; bioactivities of Lib2-1 to 27), we
scattered these data points by Sokal similarity to the center of
bioactivity data, as shown in Figure 5c. The center was virtually
estimated by the k-means algorithm59 according to the data of
Lib1-Bio and Lib2-Bio. The plots showed the cumulative hit
rate and potency of the peptides as a function of similarity (x-
axis). More specifically, the above cumulative hit rate plots
showed the hit rates of peptides with less than or equal to a
given similarity and potency. The cumulative hit rate of Lib1-
Bio at 1 μM is 41.2% (point A, 17 peptides tested), while the
cumulative hit rate of Lib2-Bio at 10 nM with the same
similarity (0.7) is 75.0% (point B, 24 peptides tested). We
concluded that Lib2-Bio had a higher percentage of hit rates
and tighter bioactivity restrictions as compared to Lib1-Bio.
Since the data from both of Lib1-Bio and Lib2-Bio are
distributed around a similarity of 0.7, it might be concluded

that the focused library kept the fundamental structure
(∼70%) but mutated at some other critical positions, thereby
leading to the significant improvements in bioactivity.
In addition to the distributions of the potency data of the

peptide sequences in 17C-Lib1-4th and 17C-Lib2-3rd, we also
analyzed the frequencies of 20 amino acids appeared at 12
positions (Figure 6a). In 17C-Lib1-4th, the three amino acids
including L, T, and S were shown in dark blue, suggesting
them as the three most frequent amino acids. In contrast, the
dark blue areas in 17C-Lib2-3rd were lumps rather than rows,
showing eight amino acids including 1H, 3Y, 4Y, 7L, 8Y, 9G,
11L, and 12G as the most frequent amino acids. This indicated
that 1H and 12G at variable positions were also conserved and
critical in 17C-Lib2-3rd apart from the other six fixed
positions. Thus, it encouraged us to further analyze the
amino acid frequencies at the six variable positions. As shown
in Figure 6b, amino acids at variable positions 2, 5, 6, and 10 in
17C-Lib2-3rd were evenly distributed, and the top 10%
macrocyclic peptides ranked by enrichment values exhibited a
similar distribution to the entire peptide sequences in 17C-

Figure 5. (a) Chemical structure and dose−response data analysis of Lib2-1. The fixed amino acids generated by PepScaf are highlighted in orange.
Amino acids involved in cyclization are labeled in red; (b) selected 27 peptides from the focused library (the amino acids colored in red are the
fixed part) and their activities against IL-17C/IL-17RE interaction; and (c) cumulative hit rate plots and the scatter plot for bioactivity data. The
Lib1-Bio data consisted of 17C-L20 and L20-1 to 23 (24 data points). The Lib2-Bio data are consisted of Lib2-1 to 27 (27 data points). The
cumulative hit rate of Lib1-Bio at 1 μM is 41.2% (point A), and the cumulative hit rate of Lib2-Bio at 10 nM with a similarity of 0.7 is 75.0% (point
B).
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Lib2-3rd. To a certain extent, the enrichment data of the top
10% peptides might be representative of the entire library.
Besides, 1H and 12G remained unchanged during the selection
process, although these two positions were proposed as
variable. This discrepancy might arise from the fact that the
correlation between the enrichment value and biological
activity is not fully conclusive, even though there exists a
certain level of correlation between them.48,49 While the
enrichment value serves as an indicator, it may not encompass
all the nuances associated with biological activity. It is
intriguing that these two amino acids reside in the
neighborhood of the residues required for macrocyclic
backbone formation. The replacements of these two amino
acids might also induce a large conformation change of the
peptide backbone, resulting in the reduction of activity. Taken
together, four variable positions (2, 5, 6, and 10) in 17C-Lib2-
3rd were amenable to mutation in the evolution for more
potent peptides and consistent with our finding that the
fundamental structure (∼70%) was retained during the
selection process.

■ CONCLUSIONS
In conclusion, we developed an integrated AI framework called
PepScaf, allowing us to obtain the critical scaffold relative to
the bioactivity on the basis of the vast dataset from the initial in
vitro selection campaign against a model protein target, IL-
17C. Based on the scaffold generated by PepScaf, a focused
library was constructed and applied for macrocyclic peptide
selection against IL-17C again by using the RaPID system.
This afforded us with 20 biologically active macrocycles against
IL-17C/IL-17RE interaction with IC50 values below 10 nM, of
which the best two cyclic peptides exhibited their notable
inhibitory activities with both IC50 values at 1.4 nM. It is
expected that the AI-based PepScaf framework might offer
time and cost savings as compared to some other approaches,
e.g., alanine scanning, providing a feasible and more efficient
methodology toward macrocyclic peptide ligand screening.
Moreover, this is the first report regarding the discovery of
macrocyclic peptides against IL-17C/IL-17RE interaction.
Additionally, our methodology not only relied on the
enrichment data from the filtering pool but also combined
wet experimental data with AI to find potential macrocyclic
peptide ligands. While our testing was limited to a model

Figure 6. (a) Heat maps of amino acid frequencies at 12 positions of the peptides in 17C-Lib1-4th and 17C-Lib2-3rd. The min−max scaling
technique was used to rescale the values within the range of 0−1 and (b) amino acid mutations at six variable positions. The histogram with blue fill
or the step curve in orange graphs the probability density on the left y-axis for 17C-Lib2-4th or the top 10% of 17C-Lib2-3rd, respectively. The
histogram with green fill graphs the frequencies of amino acids on the right y-axis.
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protein (IL-17C), this ligand/sequence-based (target-inde-
pendent) strategy may hold broader applicability for other
targets and diverse methodologies, including phage display.
Thus, our methodology seems to be more in accordance with
real-world scenarios as compared to the AI-only approach. The
combination of wet and dry experiments may be the future
trend to make AI tools become more mature and available to
scientists.

■ EXPERIMENTAL SECTION
General Information. The enzymes and kits used for RaPID

selections, including T4 RNA ligase and PURExpress kit (New
England Biolabs; NEB), M-MLV reverse transcriptase RNase H
Minus (Promega), Taq DNA polymerase and RNase inhibitor
(ABclonal; Wuhan, China), and T7 RNA polymerase (NovoBio-
technology Co., Ltd.; Beijing, China), were purchased and used as
received. Amino acids used for ribosomal synthesis were supplied by
Sangon Biotech (Shanghai, China). Primers were synthesized by
Genscript Biotech Corporation (Nanjing, China). Dynabeads M-280
Streptavidin was purchased from Thermo Fisher Scientific. Biotiny-
lated IL-17C and IL-17RE were purchased from Acrobiosystems.
Bovine serum albumin (BSA) was purchased from Beyotime.
Streptavidin-conjugated horseradish peroxidase (streptavidin-HRP)
and the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate were
supplied by Thermo Fisher Scientific. Rink Amide MBHA resin
used for the chemical synthesis of macrocyclic peptides was purchased
from Sunresin New Materials. Fmoc-protected amino acids (Fmoc-
AA-OH) were supplied by Bide Pharmatech (Shanghai, China). The
reagents, such as 1-hydroxybenzotriazole (HOBT), N,N′-diisopro-
pylcarbodiimide (DIC), ethyldiisopropylamine (DIPEA), dimethyl-
formamide (DMF), dichloromethane (DCM), diethylether (Et2O),
trifluoroacetic acid (TFA), acetonitrile (MeCN), dimethyl sulfoxide
(DMSO), triisopropylsilane (TIS), piperidine triethylamine (Et3N),
and 1,2-ethanedithiol (EDT), were purchased from Highfine Biotech
(Suzhou, China), Qiangsheng Chemical (Shanghai, China), Aladdin,
or Macklin Biochemical Technology (Shanghai, China).
Selections against IL-17C by the RaPID System. Prior to the

selections, ClAc-LTyr-tRNAfMet
CAU was prepared as previously

reported.31,32,60 The initial in vitro selection of macrocyclic peptides
against IL-17C was conducted using a ClAc-LTyr-initiated macro-
cyclic peptide library (17C-Lib1) by the RaPID system. For the first
round, a library of mRNA (AUG-(NNK)8‑12-(GGC-AGC)3-UAG)
was ligated with a DNA linker with puromycin (DNA-PEG-CC-Pu)
using T4 RNA ligase to give the mRNA-Pu library, which was directly
used for the subsequent translation in the RF1 (release factor 1) and
Met (methionine)-deleted FIT (flexible in vitro translation) system
containing 50 μM ClAc-LTyr-tRNAfMet

CAU. The resulting solution (25
μL) was successively incubated at 37 °C for 2 h, 25 °C for 15 min,
and 37 °C for 30 min after adding 5 μL of 100 mM EDTA (pH 8.0).
Subsequently, a reverse transcription solution (25 mM Tris−HCl pH
8.3, 15 mM Mg(OAc)2, 10 mM KOH, 0.25 mM dNTPs, 2 μM
CGS3an13.R39, and 50 U M-MLV reverse transcriptase RNase H
Minus) containing the RNase inhibitor was prepared by mixing the
above reaction mixture and further incubated at 42 °C for 60 min.
After adding the equal amount of blocking solution, the resulting
solution was rotationally incubated at 4 °C for 60 min in the presence
of IL-17C immobilized Dynabeads M-280 Streptavidin. Then, the
solution was removed, and the beads were washed thrice with
selection buffer. The cDNAs enriched with IL-17C binding sequences
on the beads were eluted with 1× PCR mix by heating at 95 °C for 6
min, and the collected cDNAs in the supernatant were analyzed by
the QuantStudio real-time PCR system (Applied Biosystems). Finally,
amplification by PCR afforded the cDNAs, which were used for the in
vitro transcription to produce the mRNA library for the second
round. Starting from second round, the translation scale could be
reduced to 5 μL, and pre-clearing steps were performed six times
using the beads without IL-17C to remove the undesired bead
binders.

To select macrocyclic peptides against IL-17C using a focused
library, an mRNA library (AUG-(NNK)2-TATTAT-(NNK)2-
CTTTATGGT-NNK-CTT-NNK-TGC-(GGC-AGC)3-UAG) was
prepared based on the generated scaffold in this study. The RaPID
technology, described earlier, was employed for the selection process.
The cDNAs enriched with IL-17C binding sequences were subjected
to deep sequencing using the NovaSeq 6000 system (Ilumina). The
recovery rate histograms of selections against IL-17C using 17C-Lib1
and 17C-Lib2 are shown in Figure S1.
Chemical Synthesis of the Selected Macrocyclic Peptides.

The selected thioether-cyclized macrocyclic peptides were synthesized
by the standard Fmoc solid-phase peptide synthesis (SPPS). Rink
amide MBHA resin (0.5 g), suitable for C-amide peptide synthesis,
was suspended in a freshly prepared solution (0.3 mmol of Fmoc-Gly-
OH and 0.3 mmol of HOBT in 8 mL of DMF, along with 0.5 mL of
DIC). The reaction proceeded for 1.5 h under nitrogen gas bubbling
conditions. After filtration, the resin was washed with DMF and DCM
at least three times, and the Fmoc group was removed using 20%
piperidine in DMF. The coupling reactions of the subsequent amino
acids were conducted by adding a freshly prepared solution (0.9
mmol Fmoc-AA-OH and 0.9 mmol HOBT in 10 mL of DMF, along
with 1 mL of DIC). The reaction proceeded for 1 h under nitrogen
gas bubbling conditions. The desired peptide length was achieved by
repeating the deprotection and coupling steps. Next, the bromoacetyl
group was attached to the free N-terminal α-amino group of the
peptides on the resin.

The synthesized peptides on the resin were then cleaved from the
resin, precipitated with Et2O, and redissolved in DMSO. The
thioether-cyclized peptides were obtained by adjusting the solution
to pH 8.0, followed by incubation for 1 h. Finally, the solution was
adjusted to pH 3−4 using TFA and purified by reverse phase HPLC
with a mobile phase consisting of a 0.1% TFA aqueous solution and
MeCN containing 0.1% TFA, under linear gradient conditions. The
purity of the peptides was confirmed by an LC-2020 (Shimazu), and
the mass spectra were recorded using an LCMS-2020 (Shimazu). All
macrocyclic peptides exhibited a purity of >95% according to HPLC
analysis, and the HPLC traces for all compounds have been included
in the Supporting Information.
Evaluation of the Selected Macrocyclic Peptides against

the IL-17C/IL-17RE Interaction. Competitive enzyme-linked
immunosorbant assay (ELISA) was used for determining the IC50
(50% inhibitory concentration) values of the selected macrocyclic
peptides against the interaction between IL-17C and IL-17RE. In
brief, IL-17RE was first coated on the 96-well ELISA plate by adding
80 μL of IL-17RE (1 μg/mL) to each well, followed by overnight
incubation at 4 °C. Following immobilization, the wells were
separately washed four times with 150 μL of 1× PBST buffer and
then blocked for 1 h at RT with 100 μL of 1× PBST buffer containing
2% BSA. After washing the wells four times again using 150 μL 1×
PBST buffer, 100 μL of a freshly prepared mix of biotinylated IL-17C
(0.5 nM) and each macrocyclic peptide at eight different
concentrations was added to the separate wells of the IL-17RE-
coated plate and incubated for another 1.5 h at RT. The wells were
then washed four times with 150 μL of 1× PBST buffer and incubated
with 150 μL of streptavidin-HRP solution (1:1000 dilution in 1×
PBS) for 1 h at RT. After another round of washing, 100 μL of
3,3′,5,5′-tetramethylbenzidine (TMB) solution was added to each
well, and the color development was allowed to proceed for 10 min at
RT. The reaction was finally quenched by ELISA stop solution
(Absin) and spectrophotometrically measured at 450 nm using a
Tecan Spark multimode reader. The IC50 values were calculated by
fitting the inhibition (%) data at each concentration of the
macrocyclic peptides by GraphPad Prism 6 software.
Data Preprocessing. In the 17C-Lib1 dataset, a total of 761,445

raw experiment datapoints were generated. To ensure the quality and
validity of the data, certain criteria were applied during the filtering
process. In the experimental setting, it was required that macrocyclic
peptide sequences begin with “M” and end with “CGSGSGSamber” in
order to be considered valid. Any peptides deviating from this
specified format were excluded from the dataset.
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By library-based screening and implementing these filtering steps,
we obtained 365,682 valid data (17C-Lib1-4th) generated for
machine learning modeling. The minimum enrichment value
(identical to DNA sequencing reads) of macrocyclic peptides in
17C-Lib1-4th is 1, which is interpreted as negligible binding ability.
The peptides with low enrichment values (<10) take up to 99.4%. For
the convenience of analysis, we focused on peptides consisting of 12
residues between ClAc-LY and C because the hit peptide has a length
of 12. To balance the dataset, we randomly generated negative data
points and divided it into train and test dataset at a ratio of 9:1 for the
training of Pep-BERT. In our work, the peptide sequences with
enrichment values were considered as positive data. To get the target
cluster of peptides, the CD-HIT40 was used to cluster the peptide
sequences according to the similarity of amino acid frequency where
all positive samples in 17C-Lib1 were clustered at a threshold of 80%
similarity.
Design of PepScaf. Intuitively, the residue and its position of a

macrocyclic peptide contributed to the performance in binding to IL-
17C. If we fix those residues contributing the most to binding, the
peptide is more likely to retain the affinity to the target. In this work,
the length of the scaffold was set to 12, with six positions designated
as the fixed part and the other six as the variable part. Namely, we
assumed that the macrocyclic peptides containing those six residues in
fixed positions could retain the inhibitory activity. Each of the other
six positions could be replaced with one of the 20 native amino acid
residues, following the hypothesis that the changes of variable
positions are tolerated, and the activity will be maintained. The
lengths of the fixed and variable parts can be adjusted based on the
researcher’s experience and preference. However, it is important to
consider that increasing the length of the fixed part will result in a
smaller library size, and extending the length of the variable part may
alter the binding site of the macrocyclic peptide.

The attention score revealed the key amino acid sites of peptide
sequence that were essential for binding or non-binding to the target.
Also, it determined which part each position belongs to. Initialized
with this attention score, MCTS was trained on the target cluster
dataset. Depending on the recall back reward, MCTS first calculated
the priority level of different positions and decided six crucial
positions that might affect the foundational binding ability of
macrocyclic peptides against IL-17C. Then, it determined the residue
types on those positions depending on the contribution of 20 native
amino acids. Finally, MCTS outputted a text format of the target
scaffold, which was regarded as a paradigm that is viable to be
explored as a potential macrocyclic peptide with high binding ability.

It should be noted that the length of the target scaffold and the
number of the fixed positions can be simply altered to fit different
tasks. After adding an additional null amino acid character/token to
align the peptides, PepScaf becomes capable of processing peptides of
different lengths using the modified encoding methods. Our AI-based
method can be applied to other similar tasks, guaranteeing the
generality of our scheme.
Definition of the Peptide Scaffold. In our task, each position

provides additional information about its variability. To capture this
variability, we divided all positions into three parts, with two of them
used for our task. The variability of each position was determined by
its position score, which was calculated from the attention matrix. The
visualizations of the attention matrix are presented in Figure S2.
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We denoted a vocabulary of 20 canonical native amino acids using
the symbol .
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where L, M, P, ..., A represent the single-letter abbreviations for the 20
amino acids, and m( 20)m represents a subset consisting of m
amino acids.

The generation of scaffolds can be formulated mathematically using
the Markov Decision Process (MDP)61 since the generated molecule
depends on the molecule being modified. Therefore, we began the
generation of scaffolds using MCTS, which is well-suited for this
MDP case. A peptide scaffold can then be defined as follows:
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where v, o, and f are the lengths of variable part, optional part, and
fixed part, respectively. V, O, and F are the building blocks of the
peptide scaffold, which includes position and content information.
The first parameter specifies the position, while the second parameter
specifies the content (residue) at that position. In the variable part,
any of the 20 native amino acids can be used as candidates. In the
optional part, a specific number of amino acids must be used. In the
fixed part, only a single amino acid can be used as its content.

As an example, we considered the target cyclic peptide
(HHYYRILYGELG) and set the length of the variable part as 6,
the length of the optional part as 0, and the length of the fixed part as
6. The scaffold can be defined as follows:
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The scaffold spans a peptide space with a scale of 206, while the
original scale is 2012. In addition, the scaffold is visualized in Figure 3c.
Pep-BERT. Our sequence-based Pep-BERT model was used to

extract the position scores of macrocyclic peptides by analyzing the
attention matrix and primarily address the following two tasks: (1) a
binary classification task to predict the interaction between peptides
and the target and (2) a position ranking task to determine the most
contributing position from the inputted peptide cluster. Pep-BERT
was modified from BERT. To better adapt to the task of peptide
classification, we cut down the parameters of the original BERT
mainly by reducing the number of layers and the size of vocabulary.
Details on other hyperparameters can be found in the code.

Encodings. The unknown amino acid was substituted with the
“[UNK]” character, which is not included in the amino acid alphabet.
The encoding dictionary also included the special tokens in the
original BERT such as “[PAD]”, “[CLS]”, “[SEP]”, and “[MASK]”. In
deep learning applications, discrete amino acids are generally
represented as continuous vectors through an embedding matrix.
Here, we utilized relative positional embedding12 to encode the
position of the amino acid in the sequence.

Training. The dataset used for training consisted of 200 K
macrocyclic peptides, which were balanced and divided for supervised
learning. By training on this balanced dataset, Pep-BERT was able to
learn the latent information about the diverse structures of
macrocyclic peptides. The resulting test accuracy of the model was
80%, and the area under the receiver operating characteristic
(AUROC) score was 88% (refer to the accuracy and AUROC curves
shown in Figure S4). To optimize the model during training, cross-
entropy loss was utilized.
MCTS. MCTS serves as the foundation for AlphaGo62 and has

proven to be instrumental in numerous successful AI applications.63,64

It has also demonstrated satisfactory performance in the drug field.65

As a heuristic algorithm, MCTS employs Monte Carlo simulation66 to
generate value estimates and guide searches toward rewarding
trajectories in the search tree. In essence, MCTS prioritizes plausible
amino acid nodes at specific positions, instead of exhaustively
exploring all possibilities, resulting in a significant reduction in
computing costs.

In our work, MCTS was used to combine the knowledge obtained
from Pep-BERT to generate a scaffold of macrocyclic peptides. As
illustrated in Figure 3b, MCTS comprises repeated iterations of four
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steps: selection, expansion, rollout/simulation, and backpropagation:
(1) selection: starting at the root node, successive child nodes are
recursively selected until a leaf node is reached. (2) Expansion:
following a policy, candidate child nodes are enumerated until a leaf
node ends this generation. Then, the best node is chosen from those
child nodes. (3) Simulation: the final reward can be gained after
finishing a generation that is one random rollout from a node. (4)
Backpropagation: from the root node, the reward is recursively
accumulated to update the information of visited nodes along the
trace.

It is worth noting that the selection step, the core of MCTS, tends
to deep exploration in the process of generating the scaffold, which
requires much computing time. Nonetheless, MCTS can terminate
when it reaches a specified computational limit (iteration times) or
temporal limit (searching time). Here, the upper confidence bound67

(UCB1) was introduced to MCTS for moderating the conflict
between the exploitation of deep variants after moves with high
average win rate and the exploration of moves with few simulations.

UCB1 balances between exploitation and exploration to avoid
being trapped in local optimums. In this study, UCB1 is a scalar and
maximization picks the node with the largest value. The Algorithm S5
gives sufficient information about the MCTS algorithm and the UCB1
formula.
Molecular Fingerprint Similarity of Macrocyclic Peptides.

The Sokal similarity68 is a widely used measure for quantifying the
similarity between two binary datasets, frequently applied in fields like
biology, chemistry, and information retrieval. It enables comparison of
the presence or absence of specific attributes or features. Figure 5c
shows that the shared X-axis was organized based on peptide
similarity, with molecular fingerprint similarity calculated using the
RDKit tool69 utilizing the Sokal similarity metric. Additionally, the
center peptide sequence of the data (a combined datasets of Lib1-Bio
and Lib2-Bio) was identified using the k-means algorithm. By
employing this approach, we guarantee that the peptide data points in
Figure 5c are well distributed and easily discernible.
Probability Density. Figure 6b presents a series of statistics on

the amino acid probability density at different positions, describing
the distribution of optimized amino acids at the six variable positions.
For instance, in the first plot, the blue-filled histogram illustrates the
occurrence of 20 amino acids at position 1 (12-mer cyclic peptide) in
the primary library (17C-Lib1). The occurrences are then normalized
to obtain the probability density distribution of different amino acids.

Since the primary library contains a large number of peptides with
an enrichment value of 1, we further analyzed the top 10% of peptides
with higher enrichment values (orange step curve histogram). The
distribution is similar to that in the blue histogram, indicating that the
highly enriched peptides have better data quality. Due to limited
activity data and the possibility of incomplete occurrence of all the 20
amino acids at certain positions, the right axis describes the frequency
of amino acid occurrence at different positions in the library.
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operating characteristic; BERT, bidirectional encoder repre-
sentations from transformers; BSA, bovine serum albumin;
CAIX, carbonic anhydrase; DCM, dichloromethane; DDR1,
discoidin domain receptor-1; DEL, DNA-encoded chemical
library; DIC, N,N′-diisopropylcarbodiimide; DIPEA, ethyl-
diisopropylamine; DMF, dimethylformamide; DMSO, dimeth-
yl sulfoxide; EDT, 1,2-ethanedithiol; ELISA, enzyme-linked
immunosorbent assay; Erα, estrogen receptor alpha; Et2O,
diethylether; Et3N, piperidine triethylamine; FIT, flexible in
vitro translation; Fmoc-AA-OH, Fmoc-protected amino acids;
GA, genetic algorithm; HLA, human leukocyte antigen;
HOBT, 1-hydroxybenzotriazole; IC50, the 50% inhibitory
concentration; IL-17C, interleukin-17C; IL-17RE, interleu-
kin-17 receptor E; MC, Monte Carlo; MCTS, Monte Carlo
tree search; MeCN, acetonitrile; NGS, next-generation DNA
sequencing; NLP, natural language processing; OBOC, one-
bead-one-compound; Pep-BERT, BERT model for peptide
classification; PPAR, peroxisome proliferator-activated recep-
tor; QSAR, quantitative structure−activity relationships;
RaPID, random non-standard peptide-integrated discovery;
RF1, release factor 1; RNN, recurrent neural networks; RXR,
retinoid X receptor; sEH, soluble epoxide hydrolase;
SICLOPPS, split-intein circular ligation of peptides and
proteins; SIRT2, sirtuin 2; SPPS, solid-phase peptide synthesis;
streptavidin-HRP, streptavidin-conjugated horseradish perox-
idase; TFA, trifluoroacetic acid; TIS, triisopropylsilane; TMB,
3,3′,5,5′-tetramethylbenzidine; UCB, upper confidence bound;
UMAP, uniform manifold approximation and projection
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